Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 1): 140308, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024809

RESUMO

Effect of part differences on metabolite molecule alterations in refrigerated pork was investigated. A metabolomics methodology combined with chemometric analysis was successfully established to identify key compounds and their conversion pathways, including precursors and volatile metabolites, in the Longissimus lumborum as well as the breast and flank stored for 11 days. In total, 12 discriminative precursors were identified using the Short Time-series Expression Miner. In tandem with Random Forest and ANOVA analyses, nine volatile metabolites were identified as key compounds that could be attributed to differences in pork sections. Bidirectional orthogonal partial least squares analysis revealed a potential correlation between these key metabolites and discriminative precursors. Metabolic pathway enrichment analysis demonstrated that the primary metabolic process affected by variations in pork sections is linoleic acid metabolism, which participates in the metabolism of cysteine and glutamic acid to produce methoxy-phenyl-oxime. This study provides valuable insights into the identification of differential metabolites.

2.
Food Chem ; 459: 140455, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029422

RESUMO

The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.

3.
Nat Commun ; 15(1): 6377, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075045

RESUMO

Catalytic asymmetric synthesis of polysubstituted chiral cyclopropane presents a significant challenge in organic synthesis due to the difficulty in enantioselective control. Here we report a rhodium-catalyzed highly chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes affording chiral quaternary cyclopropanes. Importantly, the easy made sterically bulky ligand L1 can effectively suppress hydrogenation and decomposition reactions and give quaternary cyclopropanes with high regio- and enantioselectivities for both aryl and alkyl functionalized substrates. Control experiments and computational studies reveal the sterically hindered well-defined chiral pocket instead of the substrates bearing electron-withdrawing diester groups is important for controlling the enantioselectivity and regioselectivity. Scale-up reaction and follow-up diverse transformations are also presented. Density Functional theory (DFT) computations suggest that the regio- and enantio-selectivities originate from the cyclopropene insertion to the Rh-H bond. The high regioselectivity is found to benefit from the presence of more efficient noncovalent interactions (NCIs) manifesting in the form of C-H···Cl, C-H···N, and l.p(Cl)···π contacts.

4.
Food Chem ; 459: 140149, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-39002337

RESUMO

Alterations in microbiotas and endogenous enzymes have been implicated in meat deterioration. However, the factors that mediate the interactions between meat quality and microbiome profile were inadequately investigated. In this study, we collected pork samples throughout the refrigeration period and employed metaproteomics to characterize both the pork and microbial proteins. Our findings demonstrated that pork proteins associated with the catabolic process are upregulated during storage compared to the initial stage. Pseudomonas, Clostridium, Goodfellowiella, and Gonapodya contribute to the spoilage process. Notably, we observed an elevated abundance of microbial proteins related to glycolytic enzymes in refrigerated pork, identifying numerous proteins linked to biogenic amine production, thus highlighting their essential role in microbial decay. Further, we reveal that many of these microbial proteins from Pseudomonas are ribosomal proteins, promoting enzyme synthesis by enhancing transcription and translation. This study provides intrinsic insights into the underlying mechanisms by which microorganisms contribute to meat spoilage.

5.
Foods ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38890876

RESUMO

cAMP-dependent protein kinase (PKA) activity regulates protein phosphorylation, with Na+ playing a crucial role in PKA activity. The aim of this study was to investigate the effects of different Na+ concentrations on PKA activity and protein phosphorylation level in postmortem muscle. The study consisted of two experiments: (1) NaCl of 0, 20, 100, 200 and 400 mM was added to a muscle homogenate incubation model to analyze the effect of Na+ concentration on PKA activity, and (2) the same concentrations were added to pure PKA in vitro incubation models at 4 °C to verify the effect of Na+ on PKA activity. The PKA activity of the muscle homogenate model increased with storage time in groups with different Na+ concentrations. High concentrations of Na+ inhibited sarcoplasmic protein phosphorylation. The PKA activity at 24 h of storage and the sarcoplasmic protein phosphorylation level at 12 h of storage in the group with 200 mM Na+ was lower than that of the other groups. After 1 h incubation, the PKA activity of samples in the 200 mM Na+ group was inhibited and lower than that in the other Na+ groups in the in vitro incubation model. These results suggest that the Na+ concentration at 200 mM could better inhibit PKA activity. This study provided valuable insights for enhancing curing efficiency and improving meat quality.

6.
Food Res Int ; 187: 114424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763675

RESUMO

This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, -20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC-MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 âˆ¼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 âˆ¼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 âˆ¼ 30.65 µmol/g), but lower total sulfhydryl (73.37 âˆ¼ 88.94 µmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to ß-sheets and random coils were observed in FT-3 âˆ¼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.


Assuntos
Culinária , Patos , Congelamento , Cromatografia Gasosa-Espectrometria de Massas , Paladar , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Manipulação de Alimentos/métodos , Oxirredução , Qualidade dos Alimentos , Substâncias Reativas com Ácido Tiobarbitúrico/análise
7.
J Agric Food Chem ; 72(20): 11724-11732, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718268

RESUMO

Protein post-translational modifications (PTMs) play an essential role in meat quality development. However, the effect of specific PTM sites on meat proteins has not been investigated yet. The characteristics of pyruvate kinase M (PKM) were found to exhibit a close correlation with final meat quality, and thus, serine 99 (S99) and lysine 137 (K137) in PKM were mutated to study their effect on PKM function. The structural and functional properties of five lamb PKM variants, including wild-type PKM (wtPKM), PKM_S99D (S99 phosphorylation), PKM_S99A (PKM S99 dephosphorylation), PKM_K137Q (PKM K137 acetylation), and PKM_K137R (PKM K137 deacetylation), were evaluated. The results showed that the secondary structure, tertiary structure, and polymer formation were affected among different PKM variants. In addition, the glycolytic activity of PKM_K137Q was decreased because of its weakened binding with phosphoenolpyruvate. In the PKM_K137R variant, the actin phosphorylation level exhibited a decrease, suggesting a low kinase activity of PKM_K137R. The results of molecular simulation showed a 42% reduction in the interface area between PKM_K137R and actin, in contrast to wtPKM and actin. These findings are significant for revealing the mechanism of how PTMs regulate PKM function and provide a theoretical foundation for the development of precise meat quality preservation technology.


Assuntos
Glicólise , Piruvato Quinase , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/química , Fosforilação , Animais , Acetilação , Ovinos , Processamento de Proteína Pós-Traducional , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/química , Carne/análise
8.
Food Res Int ; 186: 114313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729689

RESUMO

Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.


Assuntos
Acinetobacter , Técnicas de Cocultura , Microbiologia de Alimentos , Pseudomonas , Carne Vermelha , Stenotrophomonas maltophilia , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crescimento & desenvolvimento , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/metabolismo , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Stenotrophomonas maltophilia/metabolismo , Carne Vermelha/microbiologia , Carne Vermelha/análise , Ovinos , Armazenamento de Alimentos , Temperatura Baixa , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Carneiro Doméstico/microbiologia , Proteólise
9.
Food Chem ; 451: 139455, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678659

RESUMO

Interactions among flavor compounds from spices (FCS) and myofibrillar proteins (MP) were investigated. Fluorescence and Fourier transform infrared spectroscopy showed that hydrogen bonding and hydrophobic interactions were the main binding forces between FCS and MP. The FCS increased the particle size and SH content of MP and caused a reduction of zeta potential from -5.23 to -6.50 mV. Furthermore, FCS could modify the binding ability of MP and aldehydes. Eugenol reduced the ability of MP to bond with aldehydes by 22.70-47.87 %. Molecular dynamics simulations demonstrated that eugenol may combat nonanal to attain binding site of amino acid residue (PHE165) and induce protein conformational changes. Electrostatic interactions and van der Waals forces within myosin-nonanal may be disrupted by these alterations, which could reduce stability of complex and cause release of nonanal. This study could provide new insights into regulating the ability of proteins to release and hold flavors.


Assuntos
Aldeídos , Aromatizantes , Proteínas Musculares , Especiarias , Aromatizantes/química , Aromatizantes/metabolismo , Especiarias/análise , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Animais , Aldeídos/química , Aldeídos/metabolismo , Ligação Proteica , Miofibrilas/química , Miofibrilas/metabolismo , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica
10.
Food Chem ; 450: 139209, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615529

RESUMO

Adenosine triphosphate (ATP) plays a vital role in physiological processes and is an essential indicator of microbial content in food. Herein, a new sensitive, rapid and water-soluble probe for ATP detection was developed. Rhodamine B and pentaethylenehexamine were employed to design and synthesise the probe rhodamine-pentaethylenehexamine (RP) for selective ATP detection. The synthesised probe RP was characterized using Fourier transform infrared, NMR and dynamic light scattering size distributions. Upon the addition of ATP, the probe exhibited a distinct change in fluorescence intensity, with fluorescence emission at 580 nm. A linear relationship was observed between fluorescence intensity and ATP concentrations at 0-50 µmol/L, with a limit of detection of 10.97 × 10-9 mol/L. The results of the zeta potential and molecular dynamics simulation demonstrated that the detection mechanism of the probe RP is associated with the electrostatic adsorption interaction between the multi-positively charged sites of RP and the negatively charged triphosphate structure of ATP. Our study provides new insights into improving charge site identification in small molecule detection. Furthermore, the successful detection of ATP on meat surfaces indicates that RP has the potential to assess meat freshness.


Assuntos
Trifosfato de Adenosina , Corantes Fluorescentes , Carne , Rodaminas , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Rodaminas/química , Corantes Fluorescentes/química , Animais , Carne/análise , Espectrometria de Fluorescência/métodos
11.
Food Chem X ; 22: 101364, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623515

RESUMO

It is important to develop rapid, accurate, and portable technologies for detecting the freshness of chilled meat to meet the current demands of meat industry. This report introduces freshness indicators for monitoring the freshness changes of chilled meat, and systematically analyzes the current status of existing detection technologies which focus on the feasibility of using nanozyme for meat freshness sensing detection. Furthermore, it examines the limitations and foresees the future development trends of utilizing current nanozyme sensing systems in evaluating chilled meat freshness. Harmful chemicals are produced by food spoilage degradation, including biogenic amines, volatile amines, hydrogen sulfide, and xanthine, which have become new freshness indicators to evaluate the freshness of chilled meat. The recognition mechanisms are clarified based on the special chemical reaction with nanozyme or directly inducting the enzyme-like catalytic activity of nanozyme.

12.
Food Chem ; 448: 138972, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555691

RESUMO

Effects of braising duration on volatile organic compounds (VOCs) and lipids in chicken were investigated. Aroma profiles identified by an electronic nose were effective in differentiating braising stages. During braising process, a total of 25 key VOCs were detected in braised chicken, and sample braised for 210 min exhibited the highest level of key VOCs. Additionally, a gas chromatography mass spectrometry fingerprint was established to evaluate the distribution of VOCs throughout the braising process. Partial least square discriminant analysis indicated that 2-heptanone, 3-methyl-2-butanone, octanal, nonanal, butanal, (E)-2-pentenal, 1-octen-3-ol, 1-hexanol, pentanal, hexanal, and 1-pentanol significantly affected flavor characteristics of braised chicken. Furthermore, 88 differential lipids were screened, and glycerolipids metabolic was found to be main metabolic pathway during braising process. Triglycerides (TG) and phosphatidyl ethanolamine (PE), such as TG (16:0/18:1/18:2), TG (18:0/18:1/18:2), TG (18:1/18:2/18:3), TG (18:1/18:1/18:2), PE (O-18:2/18:2), PE(O-18:2/18:1), and TG (16:0/16:1/18:2), played a vital role in the generation of VOCs.

13.
Meat Sci ; 213: 109502, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552275

RESUMO

The connection and temperature control of cold chain links are key to ensuring meat quality. Considering the practical production of cold chain logistics in China, this study investigated the impact of various cold chain logistics modes (including warehousing, transportation, and sales conditions) at different temperature settings (7 °C, 4 °C, and - 1 °C), modeled in the laboratory, on the quality and bacterial community succession of pork. The pork quality was evaluated by pH, water holding capacity, total volatile basic nitrogen (TVB-N), total viable count (TVC) and myowater status. Among the different cold chain logistics modes, the LL1 (samples being warehoused and transported at 4 °C for 96 h and sold at -1 °C) and the SL1 (samples being warehoused and transported at 4 °C for 30 h and sold at -1 °C) modes were suitable for inter-provincial and intra-provincial transportation due to their long shelf life (> 14 days), respectively. The bacterial community succession of pork in different cold chain logistics modes was accessed by high-throughput sequencing. The results indicated that the cold chain logistics modes had affected the bacterial community, with Latilactobacillus being the dominant bacteria in the LL1 mode and SL1 mode during spoilage. The study revealed that the entire or partial process supercooling treatment (-1 °C) during the cold chain logistics process could effectively preserve the meat quality, supporting the high-quality development of the fresh meat cold chain logistics.


Assuntos
Microbiologia de Alimentos , Meios de Transporte , Animais , Suínos , China , Bactérias/classificação , Carne de Porco/microbiologia , Carne de Porco/análise , Armazenamento de Alimentos/métodos , Concentração de Íons de Hidrogênio , Refrigeração , Temperatura Baixa
14.
Food Chem ; 447: 138877, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492302

RESUMO

The UHPLCHRMS and Gas Chromatography-Olfactometry-Mass Spectrometry (GC-O-MS) techniques were applied to investigate effects of lipid molecules and heat transfer on the generation of aroma compounds in roasted chicken skin. Nineteen odorants were identified as most important aroma contributors based on odor activity values (OAVs) exceeding 1. Lipidomic analysis identified 3926 lipids in the samples, in which triglycerides (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and ceramide (Cer) had a contribution of 20.63%, 12.46%, 11.95%, and 11.39%, respectively. Furthermore, it was observed that PS(18:3e_22:5) and TG(18:0_18:1_18:1) serve as significant chemical markers for distinguishing chicken skin during the roasting (p < 0.05). TGs, notably TG(16:1_18:1_18:2) and TG(18:1_18:2_18:2), were postulated as key retainers for binding crucial aroma compounds. Meanwhile, PC, PE, and Cer played pivotal roles in aroma compound formation. Additionally, higher thermal conductivity and reduced thermal diffusivity significantly contributed to the formation of key odorants.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Olfatometria/métodos , Odorantes/análise , Galinhas , Cromatografia Líquida de Alta Pressão , Temperatura Alta , Compostos Orgânicos Voláteis/análise , Lipídeos
15.
Food Chem ; 447: 138930, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38503065

RESUMO

Advanced glycation end products (AGEs) and heterocyclic amines (HAs) are main harmful Maillard reaction products of meat products. Simultaneous quantification of both with high sensitivity, selectivity and accuracy remains a major challenge due to inconsistencies in their pre-treatment and instrumental methods and the different polarity of AGEs and HAs. We developed a method for the simultaneous determination of AGEs and HAs in roast/grilled meat by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) using dynamic multiple reaction monitoring (D-MRM). The instrument parameters and pre-treatment method were optimized to achieve reasonably good separation and high response for the 11 target analytes within 8 min. From 10 to 200 ng/mL, the limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.3 to 5.5 µg/L and 0.9 to 6.3 µg/L, respectively, and the correlation coefficient (R2) was >0.99. It was acceptable to recoveries, standard deviations (RSDs), and matrix effects. Six types of roast/grilled meat samples were then tested using the developed method.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Carne/análise , Aminas/química , Produtos Finais de Glicação Avançada/análise , Cromatografia Líquida de Alta Pressão/métodos
16.
Anal Chim Acta ; 1300: 342466, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38521573

RESUMO

The fluorescent flexible sensor for point-of-care quantification of clinical anticoagulant drug, Heparin (Hep), is still an urgent need of breakthrough. In this research, a hyperbranched poly(amido amine) (HPA) was decorated with tetraphenylethene (TPE) and Rhodamine B (RhB), constructing a ratiometric fluorescent sensor (TR-HPA) for Hep. When the sensor was exposed to Hep, the TPE units within the probe skeleton would aggregate, resulting in an increasing fluorescent emission at 483 nm. The 580 nm of fluorescence came from RhB enhance, simultaneously, due to the fluorescence resonance energy transfer. As a result, there are two good linear correlation between the fluorescence emission ratio (E483/E580) of TR-HPA and the Hep concentration over a range of 0-1.0 µM, with a low limit of detection of 3.0 nM. Furthermore, we incorporate the TR-HPA probe into a polyvinyl alcohol (PVA) hydrogel matrix to create a flexible fluorescent sensing system platform, denoted as TR-HPA/PVA. This approach offers a straightforward visual detection method by causing a fluorescence color change from pink to blue when trace amounts of Hep are present. The hydrogel-based fluorescent sensor streamlines the detection procedures for Hep in biomedical applications. It shows great potential in rapid and point-of-care human blood clotting condition monitoring, making it suitable for next-generation wearable medical devices.


Assuntos
Corantes Fluorescentes , Heparina , Rodaminas , Humanos , Aminas , Espectrometria de Fluorescência/métodos , Hidrogéis
17.
Food Chem ; 446: 138512, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428085

RESUMO

Pickering emulsion loading essential oil has demonstrated a promising strategy as delivery system in food preservation, but localization in stability and antimicrobial activity limits application. In this study, Pickering emulsions co-loaded with tannic acid and cinnamon essential oil (ZTC) have been developed based on zein and tannic acid complexes (ZT) mediated interfacial engineering. Fourier transform infrared, fluorescence spectroscopy, and molecular docking results indicated tannic acid altered the structural of zein. Interfacial tension results indicated that tannic acid accelerated the adsorbed speed of zein particles by decreased interfacial tension (11.99-9.96 mN/m). ZT5 formed a viscoelastic and dense layer in oil-water interface than that for other ZTs, which improved stability and control release performance of ZTC. Furthermore, the ZTC showed an effective antimicrobial activity against spoilage organisms Pseudomonad paralactis MN10 and Lactobacillus sakei VMR17. These findings provide new insight for developing co-loaded multiple antimicrobial agents within Pickering emulsion as a delivery system.


Assuntos
Anti-Infecciosos , Nanopartículas , Óleos Voláteis , Polifenóis , Zeína , Óleos Voláteis/farmacologia , Emulsões/química , Zeína/química , Cinnamomum zeylanicum , Preparações de Ação Retardada , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Tamanho da Partícula , Nanopartículas/química
18.
Foods ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338538

RESUMO

Variable pressure salting (VPS) is considered a novel salting approach to improve meat quality. This study aimed to investigate the effects of roasted duck's edible and nutritional quality after VPS through serum biochemical indicators and in vivo digestion properties in rats. The results show that roasted duck after VPS led to an increase in the total protein content (57.24 g/L) and blood glucose levels (6.87 mmol/L), as well as a decrease in the blood urea nitrogen content (11.81 mmol/L), in rats. Compared to rats fed base diets and roasted duck after static wet salting (SWS), those ingesting roasted duck after VPS exhibited higher values of apparent protein digestibility (51.24%), pepsin activity (2.40 U/mg), and trypsin activity (389.80 U/mg). Furthermore, VPS treatment improved the textural properties and microstructure of duck breasts shown by a higher immobilized water relaxation area and more ordered protein structures (α-helixes and ß-sheets). These improvements enhanced the protein anabolism capacity and in vivo digestion properties in rats. Therefore, VPS represents a beneficial salting method for promoting effective digestion and absorption in rats.

19.
Food Chem X ; 21: 101167, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38420500

RESUMO

Aroma compounds in the roasted breasts, thighs and skins of chicken were isolated by solvent-assisted flavor evaporation (SAFE), quantitated by gas chromatography-olfactometry-mass (GC-O-MS), analyzed by aroma extract dilution analysis (AEDA), and determined by recombination-omission tests and sensory evaluation. Forty-seven aroma compounds in total, including aldehydes, ketones, furans, pyrazines, and furanones, were selected by AEDA. Twenty-five compounds were selected as pivotal odorants (Odor Activity Value, OAV ≥ 1). Twenty aroma compounds significantly were identified by recombination and omission experiments. Anethole (fennel odor) was the highest OAV (> 1843). Hexanal (grassy) and (E, E)-2,4-decadienal (meaty) were the most abundant aldehydes identified in roasted chicken. 1-octen-3-ol (mushroom), methanethiol (cabbage) and dimethyl trisulfide (areca, sulfur) were considered the key compounds of the breast and thighs of roasted chicken. Notably, furanone and pyrazines, 4-hydroxy-5-methyl-3(2H)-furanone (caramel, sweet and burning odor), 3-ethyl-2,5-dimethylpyrazine (nutty, toasty) and 2,3-dimethyl-5-ethylpyrazine (nutty, toasty) had the most significant effect on roasted chicken odor, especially in the skin.

20.
Food Chem ; 442: 138290, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219561

RESUMO

Colloidal nanoparticles (CNPs), as carriers of nutrients, naturally exist in food or form during cooking. In this study, the colloidal properties, structures, rheological properties, and chemical composition location of CNPs were analyzed during 15 min to 5 h lamb soup stewing. With the increasing stewing time, the particle size and absolute value of the zeta potential of CNPs increased, indicating that CNPs became more stable. As the stewing time increased, the blue-shifted Fourier transform infrared spectroscopy absorption peaks and the red-shifted fluorescence spectroscopy absorption peaks certificated the structural changes in CNPs. And α-helix and ß-turn content decreased, while ß-sheet and random coil content increased in processing, potentially resulting in the opening CNPs structures. In addition, our findings revealed that proteins were encapsulated within the lipids in the inner part, while carbohydrates were dispersed in the outermost layers of the CNPs with a phospholipid bilayer.


Assuntos
Nanopartículas , Animais , Ovinos , Nanopartículas/química , Fenômenos Químicos , Tamanho da Partícula , Carboidratos , Culinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA