Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Plant Cell Environ ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619176

RESUMO

Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.

2.
Sci Total Environ ; 928: 172354, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614330

RESUMO

Escalation of ecological concern due to biodegradable plastics has attracted the attention of many contemporary researchers. This study searched to investigate the acute and sub-chronic toxicity of polylactic acid (PLA) and polybutyleneadipate-co-terephthalate (PLA-PBAT) bio-microplastics on 3-month-old zebrafish to elucidate their potential toxic mechanisms. Acute toxicity assessments revealed 96 h-LC50 value of 12.69 mg/L for PLA-PBAT. Sub-chronic exposure of over 21 days revealed deviations in critical behavioral patterns and physiological indicators. In treated groups, weight gain and specific growth rates were significantly lower than those obtained for the control group, such that high doses induced significant reductions in total organ coefficient (p < 0.05). A positive correlation was observed between zebrafish mortality and increased doses. Detailed behavioral evaluations revealed a dose-dependent decrease in the speed and range of swimming, along with modifications in shoaling behavior, anxiety-like responses, and avoidance behaviors. Brain tissues transcriptomic analyses revealed the molecular responses underlying sub-chronic exposure to PLA-PBAT. Totally 702 DEGs and 5 KEGG pathways were significantly identified in low-dose group, with the top 2 significant pathways being ribosome pathway and cytokine-cytokine receptor interaction pathway. Totally 650 DEGs and 5 KEGG pathways were significantly identified in medium-dose group, with the top 2 significant pathways being Herpes simplex virus 1 infection pathway and complement and coagulation cascades pathway. Totally 1778 DEGs and 16 KEGG pathways were significantly identified in high-dose group, with the top 2 significant pathways being metabolism of xenobiotics by cytochrome P450 and drug metabolism - cytochrome P450 pathway. Most significantly enriched pathways are associated with immune responses. The validation of key gene in cytokine-cytokine receptor interaction pathway also confirmed its high correlation with behavioral indicators. These results indicate that PLA-PBAT is likely to cause behavioral abnormalities in zebrafish by triggering immune dysregulation in the brain.


Assuntos
Comportamento Animal , Microplásticos , Poliésteres , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Comportamento Animal/efeitos dos fármacos , Plásticos Biodegradáveis
3.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610391

RESUMO

Mobile robots require the ability to plan collision-free paths. This paper introduces a wheel-foot hybrid parallel-leg walking robot based on the 6-Universal-Prismatic-Universal-Revolute and 3-Prismatic (6UPUR + 3P) parallel mechanism model. To enhance path planning efficiency and obstacle avoidance capabilities, an improved artificial potential field (IAPF) method is proposed. The IAPF functions are designed to address the collision problems and issues with goals being unreachable due to a nearby problem, local minima, and dynamic obstacle avoidance in path planning. Using this IAPF method, we conduct path planning and simulation analysis for the wheel-foot hybrid parallel-legged walking robot described in this paper, and compare it with the classic artificial potential field (APF) method. The results demonstrate that the IAPF method outperforms the classic APF method in handling obstacle-rich environments, effectively addresses collision problems, and the IAPF method helps to obtain goals previously unreachable due to nearby obstacles, local minima, and dynamic planning issues.

4.
Int J Biol Macromol ; 265(Pt 2): 131042, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521320

RESUMO

Worldwide crop yields are threatened by persistent pathogenic bacteria that cause significant damage and jeopardize global food security. Chemical pesticides have shown limited effectiveness in protecting crops from severe yield loss. To address this obstacle, there is a growing need to develop environmentally friendly bactericides with broad-spectrum and sustained protection against persistent crop pathogens. Here, we present a method for preparing a nanocomposite that combines antimicrobial peptides (AMPs) and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes (MWCNTs). The nanocomposite exhibited dual antibacterial activity by disrupting bacterial cell membranes and splicing nucleic acids. By functionalizing MWCNTs with small AMPs (sAMPs), we achieved enhanced stability and penetration of the nanocomposite, and improved loading capacity of the Cu-Ag nanoparticles. The synthesized MWCNTs&CuNCs@AgNPs@P nanocomposites demonstrated broad-spectrum lethality against both Gram-positive and Gram-negative bacterial pathogens. Glasshouse pot trials confirmed the efficacy of the nanocomposites in protecting rice crops against bacterial leaf blight and tomato crops against bacterial wilt. These findings highlight the excellent antibacterial properties of the MWCNTs&CuNCs@AgNPs@P nanocomposite and its potential to replace chemical pesticides, offering significant advantages for agricultural applications.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Nanotubos de Carbono , Praguicidas , Nanotubos de Carbono/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Bactérias
5.
Viruses ; 16(2)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400075

RESUMO

Bemisia tabaci (Gennadius) is an important invasive pest transmitting plant viruses that are maintained through a plant-insect-plant cycle. Tomato yellow leaf curl virus (TYLCV) can be transmitted in a persistent manner by B. tabaci, which causes great losses to global agricultural production. From an environmentally friendly, sustainable, and efficient point of view, in this study, we explored the function of d-limonene in reducing the acquisition and transmission of TYLCV by B. tabaci as a repellent volatile. D-limonene increased the duration of non-feeding waves and reduced the duration of phloem feeding in non-viruliferous and viruliferous whiteflies by the Electrical Penetration Graph technique (EPG). Additionally, after treatment with d-limonene, the acquisition and transmission rate of TYLCV was reduced. Furthermore, BtabOBP3 was determined as the molecular target for recognizing d-limonene by real-time quantitative PCR (RT-qPCR), fluorescence competitive binding assays, and molecular docking. These results confirmed that d-limonene is an important functional volatile which showed a potential contribution against viral infections with potential implications for developing effective TYLCV control strategies.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Limoneno , Simulação de Acoplamento Molecular , Insetos Vetores , Doenças das Plantas/prevenção & controle , Comportamento Alimentar
6.
Front Microbiol ; 15: 1341296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357345

RESUMO

Background: Tobacco mosaic virus (TMV) is one famous plant virus responsible for substantial economic losses worldwide. However, the roles of bacterial communities in response to TMV in the tobacco rhizosphere remain unclear. Methods: We explored the soil physicochemical properties and bacterial community succession of the healthy (YTH) and diseased (YTD) plants with TMV infection by 16S rRNA gene sequencing and bioinformatics analysis. Results: We found that soil pH in the YTD group was significantly lower than in the YTH group, and the soil available nutrients were substantially higher. The bacterial community analysis found that the diversity and structure significantly differed post-TMV disease onset. With TMV inoculated, the alpha diversity of the bacterial community in the YTD was markedly higher than that in the YTH group at the early stage. However, the alpha diversity in the YTD group subsequently decreased to lower than in the YTH group. The early bacterial structure of healthy plants exhibited higher susceptibility to TMV infection, whereas, in the subsequent stages, there was an enrichment of beneficial bacterial (e.g., Ramlibacter, Sphingomonas, Streptomyces, and Niastella) and enhanced energy metabolism and nucleotide metabolism in bacteria. Conclusion: The initial soil bacterial community exhibited susceptibility to TMV infection, which might contribute to strengthening resistance of Tobacco to TMV.

7.
Microorganisms ; 12(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399807

RESUMO

The soil microbiome plays a key role in plant health. Native soil microbiome inoculation, metagenomic profiling, and high-throughput cultivation require efficient microbe extraction. Sonication and oscillation are the most common methods used to extract soil microbiomes. However, the extraction efficiency of these methods has not been investigated in full. In this study, we compared the culturable microbe numbers, community structures, and alpha diversities among the different methods, including sonication, oscillation, and centrifugation, and their processing times. The study results showed that sonication significantly increases the culturable colony number compared with oscillation and centrifugation. Furthermore, the sonication strategy was found to be the main factor influencing extraction efficiency, but increased sonication time can aid in recovery from this impact. Finally, the extraction processing times were found to have a significant negative relationship with α-diversity among the extracted microbiota. In conclusion, sonication is the main factor for enriching in situ microbiota, and increased extraction time significantly decreases the α-diversity of the extracted microbiota. The results of this study provide insights into the isolation and utilization of different microorganism sources.

8.
Nat Commun ; 15(1): 23, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167850

RESUMO

In terrestrial ecosystems, plant leaves provide the largest biological habitat for highly diverse microbial communities, known as the phyllosphere microbiota. However, the underlying mechanisms of host-driven assembly of these ubiquitous communities remain largely elusive. Here, we conduct a large-scale and in-depth assessment of the rice phyllosphere microbiome aimed at identifying specific host-microbe links. A genome-wide association study reveals a strong association between the plant genotype and members of four bacterial orders, Pseudomonadales, Burkholderiales, Enterobacterales and Xanthomonadales. Some of the associations are specific to a distinct host genomic locus, pathway or even gene. The compound 4-hydroxycinnamic acid (4-HCA) is identified as the main driver for enrichment of bacteria belonging to Pseudomonadales. 4-HCA can be synthesized by the host plant's OsPAL02 from the phenylpropanoid biosynthesis pathway. A knockout mutant of OsPAL02 results in reduced Pseudomonadales abundance, dysbiosis of the phyllosphere microbiota and consequently higher susceptibility of rice plants to disease. Our study provides a direct link between a specific plant metabolite and rice phyllosphere homeostasis opening possibilities for new breeding strategies.


Assuntos
Microbiota , Oryza , Oryza/genética , Oryza/microbiologia , Lignina , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Folhas de Planta/microbiologia , Homeostase , Bactérias/genética , Plantas/genética
9.
Res Microbiol ; : 104152, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952706

RESUMO

Phytophthora sojae, one of the most devastating Oomycete pathogens, causes severe diseases that lead to economic loss in the soybean industry. The production of zoospores play a crucial role during the development of Phytophthora disease. In this work, CRISPR/Cas9 genome editing technology were used to obtain protein kinase A regulatory subunit (PsPkaR) knockout mutants. The role of PsPkaR in the production of zoospores and pathogenicity of P. sojae was analyzed. The overall findings indicate that PsPkaR is involved in regulating the growth process of P. sojae, primarily affecting the hyphal morphology and growth rate. Additionally, PsPkaR participates in the regulation of the release process of zoospores. Specifically, knocking-out PsPkaR resulted in incomplete cytoplasmic differentiation and uneven protoplast division, leading to abnormal release of zoospores. Furthermore, when the PsPkaR knockout mutants were inoculated on soybean leaves, the pathogenicity was significantly reduced compared to that of the wild-type and control strains. These findings of this study provide important clues and evidence regarding the role of the cAMP-PKA signaling pathway in the interaction between P. sojae and its host. This work contributes to a better understanding of the pathogenic mechanism of P. sojae and the development of corresponding prevention and control strategies.

10.
Food Chem X ; 19: 100854, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780331

RESUMO

In this study, the fate, processing factors and relationship with physicochemical properties of thirteen pesticides in field-collected pepper samples during Chinese chopped pepper and chili powder production was systematically studied. The washing, air-drying, chopping and salting and fermentation processes reduced 24.8%-62.8%, 0.9%-26.4%, 25.1%-50.3% and 16.3%-90.0% of thirteen pesticide residues, respectively, while the sun-drying processing increased the residues of eleven pesticides by 1.27-5.19 fold. The PFs of thirteen pesticides were < 1 in chopped pepper production and the PFs of eleven pesticides were more than 1 for chili powder production. The chopped pepper processing efficiency have most negative correlation with octanol-water partition coefficient. In contrast, the chili powder processing efficiency have most positive correlation with vapour pressure. Thus, this study can offer important references for assessment the pesticide residue levels in Chinese traditional fermented chopped pepper and chili powder production from fresh peppers.

11.
Can J Infect Dis Med Microbiol ; 2023: 9933783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663453

RESUMO

Beauveria bassiana is a well-known insecticidal biocontrol agent. Despite its broad field applications, its survival, colonization, and stability under field conditions remained unclear, mainly due to the lack of a quick and reliable detection method. In this study, we developed a quantitative real-time PCR technology to monitor the stability and population dynamics of B. bassiana in different substrates (water, soil, and on the cotton leaves surface), different spores of B. bassiana applied on Chinese cabbage leaves surface, and the lethality of Pieris rapae spraying with different spores of B. bassiana. Our results showed a decreased concentration of B. bassiana DNA in all three substrates from the 1st day till 9th day of post inoculation (dpi) period, possibly due to the death of B. bassiana. After this decrease, a quick and significant rebound of B. bassiana DNA concentration was observed, starting from the 11th dpi in all three substrates. The B. bassiana DNA concentration reached the plateau at about 13th dpi in water and 17th dpi in the soil. On cotton leaves surface, the B. bassiana DNA concentration reached the highest level at the 17th dpi followed by a small decline and then stabilized. This increase of DNA concentration suggested recovery of B. bassiana growth in all three substrates. We found that the most suitable killing effectiveness of P. rapae was the 1.0 × 107 spores/mL of B. bassiana. In summary, we have established a detection technology that allows a fast and reliable monitoring for the concentration and stability of B. bassiana under different conditions. This technology can benefit and help us in the development of proper management strategies for the application of this biocontrol agent in the field.

12.
Appl Environ Microbiol ; 89(6): e0048723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37272846

RESUMO

The phyllosphere presents a hostile environment for many biocontrol agents; however, it is as significant as is the rhizosphere for plant health. Deploying biocontrol bacteria into the phyllosphere can efficiently suppress diseases; however, the lack of knowledge on the phyllosphere adaptive traits of biocontrol bacteria poses challenges. In this study, we demonstrated that Rhodopseudomonas palustris GJ-22 colonizes the phyllosphere by forming cell aggregates. The formation of cell aggregates required the production of exopolysaccharides (EPS), which depended on the function of the rpaI-rpaR quorum sensing (QS) mechanism, mediated by the signaling molecule p-coumaroyl-HSL (pC-HSL). The mutation of the EPS biosynthesis gene Exop1 or the signaling molecule biosynthesis gene rpaI compromised the ability of GJ-22 to tolerate reactive oxygen intermediates (ROIs), such as H2O2, in vitro and to form cell aggregates in vivo. Collectively, the results revealed that QS mediates EPS production and consequently leads to bacterial cell aggregation. IMPORTANCE Quorum sensing is used by various bacteria for coordinating the multiplication of bacterial cells in a group and for modulating the behaviors of surrounding microbial species. Host plants can benefit from this interspecies modulation, as it can disrupt the QS circuits of pathogenic bacteria. Some N-acyl homoserine lactone- (AHL-) producing bacteria that were introduced into the phyllosphere as biocontrol agents may establish AHL-based crosstalk with indigenous microbes to steer the nutritional and microecological conditions toward their own and the host plant's benefit. Here, we showed that biocontrol bacteria introduced into the phyllosphere require a functioning QS circuit to establish colonies and suppress pathogens. Furthermore, our findings provoked a broader investigation into the role of the QS circuit in beneficial microorganism-plant interactions.


Assuntos
Percepção de Quorum , Rodopseudomonas , Percepção de Quorum/genética , Peróxido de Hidrogênio , Rodopseudomonas/genética , Transdução de Sinais , Acil-Butirolactonas
13.
PLoS Pathog ; 19(5): e1011365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126519

RESUMO

Viruses are constantly subject to natural selection to enrich beneficial mutations and weed out deleterious ones. However, it remains unresolved as to how the phenotypic gains or losses brought about by these mutations cause the viral genomes carrying the very mutations to become more or less numerous. Previous investigations by us and others suggest that viruses with plus strand (+) RNA genomes may compel such selection by bottlenecking the replicating genome copies in each cell to low single digits. Nevertheless, it is unclear if similarly stringent reproductive bottlenecks also occur in cells invaded by DNA viruses. Here we investigated whether tomato yellow leaf curl virus (TYLCV), a small virus with a single-stranded DNA genome, underwent population bottlenecking in cells of its host plants. We engineered a TYLCV genome to produce two replicons that express green fluorescent protein and mCherry, respectively, in a replication-dependent manner. We found that among the cells entered by both replicons, less than 65% replicated both, whereas at least 35% replicated either of them alone. Further probability computation concluded that replication in an average cell was unlikely to have been initiated with more than three replicon genome copies. Furthermore, sequential inoculations unveiled strong mutual exclusions of these two replicons at the intracellular level. In conclusion, the intracellular population of the small DNA virus TYLCV is actively bottlenecked, and such bottlenecking may be a virus-encoded, evolutionarily conserved trait that assures timely selection of new mutations emerging through error-prone replication.


Assuntos
Begomovirus , Begomovirus/genética , Genoma Viral , Doenças das Plantas/genética
14.
Front Microbiol ; 14: 1107038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007483

RESUMO

Tomato disease is an important disease affecting agricultural production, and the combined infection of tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) has gradually expanded in recent years, but no effective control method has been developed to date. Both viruses are transmitted by Bemisia tabaci Mediteranean (MED). Previously, we found that after B. tabaci MED was fed on ToCV-and TYLCV-infected plants, the transmission efficiency of ToCV was significantly higher than that on plants infected only with ToCV. Therefore, we hypothesize that co-infection could enhance the transmission rates of the virus. In this study, transcriptome sequencing was performed to compare the changes of related transcription factors in B. tabaci MED co-infected with ToCV and TYLCV and infected only with ToCV. Hence, transmission experiments were carried out using B. tabaci MED to clarify the role of cathepsin in virus transmission. The gene expression level and enzyme activity of cathepsin B (Cath B) in B. tabaci MED co-infected with ToCV and TYLCV increased compared with those under ToCV infection alone. After the decrease in cathepsin activity in B. tabaci MED or cathepsin B was silenced, its ability to acquire and transmit ToCV was significantly reduced. We verified the hypothesis that the relative expression of cathepsin B was reduced, which helped reduce ToCV transmission by B. tabaci MED. Therefore, it was speculated that cathepsin has profound research significance in the control of B. tabaci MED and the spread of viral diseases.

15.
Front Physiol ; 14: 1123583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008006

RESUMO

The nuclear receptors HR3 and FTZ-F1 are highly conserved and function to regulate molting and reproduction in both hemimetabolous and holometabolous insects. However, their roles in Nilaparvata lugens are largely unknown. In the present study, we discover that NlHR3 and NlFTZ-F1 are activated in the nymph stages by ecdysone signaling. Transcription disruption of NlHR3 and NlFTZ-F1 expression prevents nymph ecdysis and metamorphosis, which leads to abnormal appearance, malformed ovaries, and lethal phenotypes. In addition, we demonstrate that NlHR3 and NlFTZ-F1 regulate molting and reproduction by interacting with the intrinsic 20E and JH signaling pathways. Our work offers a deep insight into the action mechanisms of HR3 and FTZ-F1 in insects. Moreover, NlHR3 and NlFTZ-F1 could properly be exploited as potential target genes for developing RNAi-based pesticides to control N. lugens.

16.
Front Microbiol ; 14: 1151747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056753

RESUMO

Introduction: Tomato chlorosis virus (ToCV) is a typical member of the genus Crinivirus, which severely threatens Solanaceae crops worldwide. The CPm protein encoded by ToCV has been reported to be associated with virus transmission by vectors and is involved in RNA silencing suppression, while the mechanisms remain ambiguous. Methods: Here, ToCV CPm was ectopically expressed by a Potato virus X (PVX) vector and infiltrated into Nicotiana benthamiana wild-type and GFP-transgenic16c plants. Results: The phylogenetic analysis showed that the CPm proteins encoded by criniviruses were distinctly divergent in amino acid sequences and predicted conserved domains, and the ToCV CPm protein possesses a conserved domain homologous to the TIGR02569 family protein, which does not occur in other criniviruses. Ectopic expression of ToCV CPm using a PVX vector resulted in severe mosaic symptoms followed by a hypersensitive-like response in N. benthamiana. Furthermore, agroinfiltration assays in N. benthamiana wilt type or GFP-transgenic 16c indicated that ToCV CPm protein effectively suppressed local RNA silencing induced by single-stranded but not double-stranded RNA, which probably resulted from the activity of binding double-stranded but not single-stranded RNA by ToCV CPm protein. Conclusion: Taken together, the results of this study suggest that the ToCV CPm protein possesses the dual activities of pathogenicity and RNA silencing, which might inhibit host post-transcriptional gene silencing (PTGS)-mediated resistance and is pivotal in the primary process of ToCV infecting hosts.

17.
Front Plant Sci ; 14: 1122978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818855

RESUMO

Vacuolar ATPases (V-ATPases) are proton pumps for proton translocation across membranes that utilize energy derived from ATP hydrolysis; OsV-ATPase subunit d (OsV-ATPase d) is part of an integral, membrane-embedded V0 complex in the V-ATPase complex. Whether OsV-ATPase d is involved in phytohormone biosynthesis and resistance in rice remains unknown. The knockout mutants of OsV-ATPase d in rice were generated using the CRISPR/Cas9 system, and mutation of OsV-ATPase d did not show any detrimental effect on plant growth or yield productivity. Transcriptomic results showed that OsV-ATPase d is probably involved in mediating the biosynthesis of plant hormones and resistance in rice. Compared to wild type, mutation of OsV-ATPase d significantly increased JA and ABA biosynthesis and resistance against Southern rice black-streaked dwarf virus (SRBSDV), but it decreased resistance against Rice stripe virus (RSV) in rice. The data presented in this study reveal that OsV-ATPase d mediates phytohormone biosynthesis and virus resistance in rice and can be selected as a potential target for resistance breeding in rice.

18.
Pest Manag Sci ; 79(5): 1750-1759, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36617695

RESUMO

BACKGROUND: The whitefly, Bemisia tabaci (Gennadius) is one of the most economically important pests that cause serious damage to agricultural production by transmitting plant pathogenic viruses. Approximately 90% of the virus species transmitted by the whitefly are members of the genus begomovirus. Ramie mosaic virus (RaMoV) is a new bipartite begomovirus that causes severe damage to ramie and several other economic crops in China. In previous studies, we have demonstrated that RaMoV had no obvious direct or indirect effects on B. tabaci. However, whether B. tabaci affects RaMoV infection and the molecular mechanisms of their interaction remain unclear. RESULTS: Here, we identified a zinc finger protein 330 (ZNF330) in B. tabaci MED interacted with the coat protein (CP) of RaMoV by the yeast two-hybrid assay. Then the interaction between ZNF330 and RaMoV CP was further verified by glutathione S-transferase (GST) pull-down assay. The expression of ZNF330 gene was continuously induced after RaMoV infection. ZNF330 negatively regulated RaMoV replication in the B. tabaci MED. Furthermore, the longevity and fecundity of RaMoV-infected female adults were significantly decreased after silencing of ZNF330. CONCLUSIONS: Our results indicated that the ZNF330 protein was involved in the negative regulation of RaMoV replication in the B. tabaci MED. High viral accumulation caused by ZNF330 silencing is detrimental to fecundity and longevity of the B. tabaci MED. These findings provided a new insight into identifying the binding partners in whitefly with viral CP and fully understanding the complex interactions between begomoviruses and their whitefly vector. © 2023 Society of Chemical Industry.


Assuntos
Begomovirus , Boehmeria , Hemípteros , Vírus do Mosaico , Viroses , Animais , Hemípteros/fisiologia , Doenças das Plantas , Begomovirus/fisiologia , Proteínas do Capsídeo , Dedos de Zinco
19.
Pest Manag Sci ; 79(4): 1508-1517, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36533303

RESUMO

BACKGROUND: Tomato chlorosis virus (ToCV) is a semi-persistent plant virus that is primarily transmitted by the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). It causes a serious disease that lowers tomato yield. Insulin-like peptide (ILP), an insulin homolog, regulates trehalose metabolism in a variety of insects. In a previous study, we discovered that trehalose metabolism is required for whiteflies to transmit ToCV effectively. Furthermore, transcriptome sequencing revealed that the BtILP7 gene was highly expressed in B. tabaci infected with ToCV. Therefore, the whitefly ILP7 gene may facilitate the transmission of ToCV and be an attractive target for the control of whiteflies and subsequently ToCV. RESULTS: The ToCV content in B. tabaci MED was found to be correlated with BtILP7 gene expression. Subsequent RNA interference (RNAi) of the BtILP7 gene had a significant impact on B. tabaci MED's trehalose metabolism and reproductive capacity, as well as ability to transmit ToCV. CONCLUSIONS: These results indicate that the BtILP7 gene was closely related to ToCV transmission by regulating trehalose metabolism and reproduction behavior, thus providing a secure and environmentally friendly management strategy for the control of whiteflies and ToCV-caused disease. © 2022 Society of Chemical Industry.


Assuntos
Crinivirus , Hemípteros , Animais , Insulina , Trealose , Crinivirus/genética , Hemípteros/fisiologia
20.
J Fungi (Basel) ; 10(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276021

RESUMO

Previous research has shown that the pathogenicity and appressorium development of Magnaporthe oryzae can be inhibited by the ATP synthase subunit beta (Atp2) present in the photosynthetic bacterium Rhodopseudomonas palustris. In the present study, transgenic plants overexpressing the ATP2 gene were generated via genetic transformation in the Zhonghua11 (ZH11) genetic background. We compared the blast resistance and immune response of ATP2-overexpressing lines and wild-type plants. The expression of the Atp2 protein and the physiology, biochemistry, and growth traits of the mutant plants were also examined. The results showed that, compared with the wild-type plant ZH11, transgenic rice plants heterologously expressing ATP2 had no significant defects in agronomic traits, but the disease lesions caused by the rice blast fungus were significantly reduced. When infected by the rice blast fungus, the transgenic rice plants exhibited stronger antioxidant enzyme activity and a greater ratio of chlorophyll a to chlorophyll b. Furthermore, the immune response was triggered stronger in transgenic rice, especially the increase in reactive oxygen species (ROS), was more strongly triggered in plants. In summary, the expression of ATP2 as an antifungal protein in rice could improve the ability of rice to resist rice blast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA