Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1177171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377770

RESUMO

Background: Excessive use of headache treatments often leads to the development, progression and exacerbation of primary headache, which is defined as medication overuse headache (MOH). A significant pathophysiological mechanism of MOH is central sensitization. Recent evidence suggests that central sensitization in chronic headache is a result of inflammatory responses mediated by microglial activation in the trigeminal nucleus caudalis (TNC). However, it is unknown whether microglial activation has an impact on the central sensitization of MOH. Accordingly, the goal of this research was to determine how microglial activation and the P2X7R/NLRP3 inflammasome signaling pathway in the TNC contribute to the pathogenesis of MOH. Methods: Repeated intraperitoneal injection of sumatriptan (SUMA) was used to establish a mouse model of MOH. Basal mechanical hyperalgesia was evaluated using von Frey filaments. As central sensitization biomarkers, the c-Fos and CGRP expression levels were measured by immunofluorescence analysis. We estimated the expression of microglial biomarkers (Iba1 and iNOS) within the TNC by qRT-PCR, western blotting and immunofluorescence analysis. To elucidate the effect of microglial activation and the P2X7/NLRP3 signaling pathway on central sensitization in MOH, we evaluated whether the microglia-specific inhibitor minocycline, the P2X7R-specific antagonist BBG and the NLRP3-specific inhibitor MCC950 altered SUMA-caused mechanical hyperalgesia. Furthermore, we examined c-Fos and CGRP expression within the TNC following individual injections of these inhibitors. Results: Repeated SUMA injection induced basal mechanical hyperalgesia, increased c-Fos and CGRP levels, and activated microglia within the TNC. Inhibiting microglial activation with minocycline prevented the emergence of mechanical hyperalgesia and cut down c-Fos and CGRP expression. Immunofluorescence colocalization analysis revealed that P2X7R was predominantly co-localized with microglia. The levels of P2X7R and the NLRP3 inflammasome were elevated by repeated SUMA injection, and blocking P2X7R and NLRP3 inhibited mechanical hyperalgesia and cut down c-Fos and CGRP expression within the TNC. Conclusion: Based on the current findings, inhibiting microglial activation could reduce central sensitization caused by chronic SUMA treatment via the P2X7R/NLRP3 signaling pathway. The clinical management of MOH may benefit from a novel strategy that inhibits microglial activation.

2.
J Headache Pain ; 24(1): 77, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37386456

RESUMO

BACKGROUND: Prior clinical studies suggest a shared mechanism between vestibular symptoms and migraine headache. However, the specific neuroanatomical substrate connecting vestibular symptoms with migraine remains to be largely unknown. Thus, the aim of this study was to further investigate the mechanisms that whether and how trigeminovestibular neurons produce effects on neuronal activation in vestibular nucleus (VN). METHODS: A chronic-NTG rat model was established by recurrent intermittent administration of nitroglycerin (NTG). Pain- and vestibular-related behaviors were assessed. To selectively inhibit the glutamatergic neurons and trigeminal nucleus caudalis (TNC) to VN projection neurons, the AAVs encoding engineered Gi-coupled hM4D receptor were administered in the TNC or VN area. RESULTS: We identify a glutamatergic projection from TNC to VN that mediates vestibular dysfunction in a chronic-NTG rat model. Inhibition of the GlutamateTNC neurons alleviates vestibular dysfunction in the chronic-NTG rat. Calcitonin gene-related peptide (CGRP)-expressing neurons in the VN received glutamatergic projections from TNC neurons. Silencing the glutamatergic TNC-VN projection neurons attenuates vestibular dysfunction in the chronic-NTG rat. CONCLUSIONS: Together, we reveal a modulatory role of glutamatergic TNC-VN projection neurons in vestibular dysfunction of migraine.


Assuntos
Transtornos de Enxaqueca , Nitroglicerina , Animais , Ratos , Neurônios , Peptídeo Relacionado com Gene de Calcitonina , Núcleos do Trigêmeo
3.
Front Mol Neurosci ; 16: 1142072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324588

RESUMO

Background: According to our previous study, the loss of inhibitory interneuron function contributes to central sensitization in chronic migraine (CM). Synaptic plasticity is a vital basis for the occurrence of central sensitization. However, whether the decline in interneuron-mediated inhibition promotes central sensitization by regulating synaptic plasticity in CM remains unclear. Therefore, this study aims to explore the role of interneuron-mediated inhibition in the development of synaptic plasticity in CM. Methods: A CM model was established in rats by repeated dural infusion of inflammatory soup (IS) for 7 days, and the function of inhibitory interneurons was then evaluated. After intraventricular injection of baclofen [a gamma-aminobutyric acid type B receptor (GABABR) agonist] or H89 [a protein kinase A (PKA) inhibitor), behavioral tests were performed. The changes in synaptic plasticity were investigated by determining the levels of the synapse-associated proteins postsynaptic density protein 95 (PSD95), synaptophysin (Syp) and synaptophysin-1(Syt-1)]; evaluating the synaptic ultrastructure by transmission electron microscopy (TEM); and determining the density of synaptic spines via Golgi-Cox staining. Central sensitization was evaluated by measuring calcitonin gene-related peptide (CGRP), brain-derived neurotrophic factor (BDNF), c-Fos and substance P (SP) levels. Finally, the PKA/Fyn kinase (Fyn)/tyrosine-phosphorylated NR2B (pNR2B) pathway and downstream calcium-calmodulin-dependent kinase II (CaMKII)/c-AMP-responsive element binding protein (pCREB) signaling were assessed. Results: We observed dysfunction of inhibitory interneurons, and found that activation of GABABR ameliorated CM-induced hyperalgesia, repressed the CM-evoked elevation of synapse-associated protein levels and enhancement of synaptic transmission, alleviated the CM-triggered increases in the levels of central sensitization-related proteins, and inhibited CaMKII/pCREB signaling via the PKA/Fyn/pNR2B pathway. The inhibition of PKA suppressed the CM-induced activation of Fyn/pNR2B signaling. Conclusion: These data reveal that the dysfunction of inhibitory interneurons contributes to central sensitization by regulating synaptic plasticity through the GABABR/PKA/Fyn/pNR2B pathway in the periaqueductal gray (PAG) of CM rats. Blockade of GABABR-pNR2B signaling might have a positive influence on the effects of CM therapy by modulating synaptic plasticity in central sensitization.

4.
J Headache Pain ; 23(1): 98, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948867

RESUMO

BACKGROUND: The pathogenesis of chronic migraine remains unresolved. Recent studies have affirmed the contribution of GLUA1-containing AMPA receptors to chronic migraine. The dopamine D2 receptor, a member of G protein-coupled receptor superfamily, has been proven to have an analgesic effect on pathological headaches. The present work investigated the exact role of the dopamine D2 receptor in chronic migraine and its effect on GLUA1-containing AMPA receptor trafficking. METHODS: A chronic migraine model was established by repeated inflammatory soup stimulation. Mechanical, periorbital, and thermal pain thresholds were assessed by the application of von Frey filaments and radiant heat. The mRNA and protein expression levels of the dopamine D2 receptor were analyzed by qRT‒PCR and western blotting. Colocalization of the dopamine D2 receptor and the GLUA1-containing AMPAR was observed by immunofluorescence. A dopamine D2 receptor agonist (quinpirole) and antagonist (sulpiride), a PI3K inhibitor (LY294002), a PI3K pathway agonist (740YP), and a GLUA1-containing AMPAR antagonist (NASPM) were administered to confirm the effects of the dopamine D2 receptor, the PI3K pathway and GULA1 on central sensitization and the GLUA1-containing AMPAR trafficking. Transmission electron microscopy and Golgi-Cox staining were applied to assess the impact of the dopamine D2 receptor and PI3K pathway on synaptic morphology. Fluo-4-AM was used to clarify the role of the dopamine D2 receptor and PI3K signaling on neuronal calcium influx. The Src family kinase (SFK) inhibitor PP2 was used to explore the effect of Src kinase on GLUA1-containing AMPAR trafficking and the PI3K signaling pathway. RESULTS: Inflammatory soup stimulation significantly reduced pain thresholds in rats, accompanied by an increase in PI3K-P110ß subunit expression, loss of dopamine receptor D2 expression, and enhanced GLUA1-containing AMPA receptor trafficking in the trigeminal nucleus caudalis (TNC). The dopamine D2 receptor colocalized with the GLUA1-containing AMPA receptor in the TNC; quinpirole, LY294002, and NASPM alleviated pain hypersensitivity and reduced GLUA1-containing AMPA receptor trafficking in chronic migraine rats. Sulpiride aggravated pain hypersensitivity and enhanced GLUA1 trafficking in CM rats. Importantly, the anti-injury and central sensitization-mitigating effects of quinpirole were reversed by 740YP. Both quinpirole and LY294002 inhibited calcium influx to neurons and modulated the synaptic morphology in the TNC. Additional results suggested that DRD2 may regulate PI3K signaling through Src family kinases. CONCLUSION: Modulation of GLUA1-containing AMPA receptor trafficking and central sensitization by the dopamine D2 receptor via the PI3K signaling pathway may contribute to the pathogenesis of chronic migraine in rats, and the dopamine D2 receptor could be a valuable candidate for chronic migraine treatment.


Assuntos
Transtornos de Enxaqueca , Receptores de AMPA , Animais , Cálcio/metabolismo , Sensibilização do Sistema Nervoso Central/fisiologia , Masculino , Transtornos de Enxaqueca/metabolismo , Dor , Fosfatidilinositol 3-Quinases/metabolismo , Quimpirol/farmacologia , Ratos , Receptores de AMPA/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Sulpirida/farmacologia
5.
J Headache Pain ; 23(1): 35, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260079

RESUMO

BACKGROUND: Vestibular symptoms are frequently reported in patients with chronic migraine (CM). However, whether vestibular symptoms arise through overlapping neurobiology of migraine remains to be elucidated. The neuropeptide calcitonin gene-related peptide (CGRP) and CGRP1 receptor play important pathological roles in facilitating central sensitization in CM. Therefore, we aimed to investigate whether CGRP1 receptor contributes to vestibular dysfunction after CM by improving synaptic transmission in the vestibular nucleus (VN). METHODS: A CM rat model was established by recurrent intermittent administration of nitroglycerin (NTG). Migraine- and vestibular-related behaviors were assessed. CGRP1 receptor specific antagonist, BIBN4096BS, and protein kinase C (PKC) inhibitor chelerythrine chloride (CHE) were administered intracerebroventricularly. The expressions of CGRP and CGRP1 receptor components, calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) were evaluated by western blot, immunofluorescent staining and quantitative real-time polymerase chain reaction in the vestibular nucleus (VN). Synaptic associated proteins and synaptic morphological characteristics were explored by western blot, transmission electron microscope, and Golgi-cox staining. The expressions of PKC, phosphorylated extracellular signal regulated kinase (p-ERK), phosphorylated cAMP response element-binding protein at serine 133 site (p-CREB-S133) and c-Fos were detected using western blot or immunofluorescent staining. RESULTS: The expressions of CGRP, CLR and RAMP1 were significantly upregulated in CM rats. CLR and RAMP1 were expressed mainly in neurons. BIBN4096BS treatment and PKC inhibition alleviated mechanical allodynia, thermal hyperalgesia and vestibular dysfunction in CM rats. Additionally, BIBN4096BS treatment and PKC inhibition markedly inhibited the overexpression of synaptic associated proteins and restored the abnormal synaptic structure in VN after CM. Furthermore, BIBN4096BS treatment dysregulated the expression levels of PKC, p-ERK and p-CREB-S133, and attenuated neuronal activation in VN after CM. CONCLUSIONS: The present study demonstrated that CGRP1 receptor inhibition improved vestibular function after CM by reversing the aberrant synaptic transmission via downregulating PKC/ERK/CREB signaling pathway. Therapeutic interventions by inhibiting CGRP/CGRP1 signaling may be a new target for the treatment of vestibular symptoms in CM.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Transtornos de Enxaqueca , Transmissão Sináptica , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Piperazinas/farmacologia , Quinazolinas/farmacologia , Ratos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Transmissão Sináptica/efeitos dos fármacos
6.
J Headache Pain ; 23(1): 25, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144528

RESUMO

BACKGROUND: Central sensitization is an important pathophysiological mechanism of chronic migraine (CM), and microglia activation in trigeminocervical complex (TCC) contributes to the development of central sensitization. Emerging evidence implicates that blocking sphingosine-1-phosphate receptor 1 (S1PR1) can relieve the development of chronic pain and inhibit the activation of microglia. However, it is unclear whether S1PR1 is involved in the central sensitization of CM. Therefore, the purpose of this study is to explore the role of S1PR1 and its downstream signal transducers and activators of transcription 3 (STAT3) signaling pathway in the CM, mainly in inflammation. METHODS: Chronic intermittent intraperitoneal injection of nitroglycerin (NTG) established a mouse model of CM. First, we observed the changes and subcellular localization of S1PR1 in the trigeminocervical complex (TCC). Then, W146, a S1PR1 antagonist; SEW2871, a S1PR1 agonist; AG490, a STAT3 inhibitor were applied by intraperitoneal injection to investigate the related molecular mechanism. The changes in the number of microglia and the expression of calcitonin gene-related peptide (CGRP) and c-fos in the TCC site were explored by immunofluorescence. In addition, we studied the effect of S1PR1 inhibitors on STAT3 in lipopolysaccharide-treated BV-2 microglia. RESULTS: Our results showed that the expression of S1PR1 was increased after NTG injection and S1PR1 was colocalized with in neurons and glial cells in the TCC. The S1PR1 antagonist W146 alleviated NTG-induced hyperalgesia and suppressed the upregulation of CGRP, c-fos and pSTAT3 in the TCC. Importantly, blocking S1PR1 reduced activation of microglia. In addition, we found that inhibiting STAT3 signal also attenuated NTG-induced basal mechanical and thermal hyperalgesia. CONCLUSIONS: Our results indicate that inhibiting S1PR1 signal could alleviate central sensitization and inhibit microglia activity caused by chronic NTG administration via STAT3 signal pathway, which provide a new clue for the clinical treatment of CM.


Assuntos
Transtornos de Enxaqueca , Nitroglicerina , Receptores de Esfingosina-1-Fosfato/genética , Animais , Sensibilização do Sistema Nervoso Central , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico
7.
J Neuroinflammation ; 18(1): 287, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893074

RESUMO

BACKGROUND: Previous studies have confirmed that the microglial activation and subsequent inflammatory responses in the trigeminal nucleus caudalis (TNC) are involved in the central sensitization of chronic migraine (CM). MicroRNA-155-5p has been shown to modulate the polarization of microglia and participate in inflammatory processes in a variety of neurological diseases. However, its role in CM remains unclear. The purpose of this study was to determine the precise role of miR-155-5p in CM. METHODS: A model of CM in C57BL/6 mice was established by recurrent intraperitoneal injection of nitroglycerin (NTG). Mechanical and thermal hyperalgesia were evaluated by Von Frey filaments and radiant heat. The expression of miR-155-5p was examined by qRT-PCR, and the mRNA and protein levels of silent information regulator 1(SIRT1) were measured by qRT-PCR, Western blotting (WB) and immunofluorescence (IF) analysis. The miR-155-5p antagomir, miR-155-5p agomir, SRT1720 (a SIRT1 activator) and EX527 (a SIRT1 inhibitor) were administered to confirm the effects of miR-155-5p and SIRT1 on neuroinflammation and the central sensitization of CM. ELISA, WB and IF assays were applied to evaluate the expression of TNF-α, myeloperoxidase (MPO), IL-10, p-ERK, p-CREB, calcitonin gene-related peptide (CGRP), c-Fos and microglial activation. The cellular localization of SIRT1 was illustrated by IF. RESULTS: After the NTG-induced mouse model of CM was established, the expression of miR-155-5p was increased. The level of SIRT1 was decreased, and partly colocalized with Iba1 in the TNC. The miR-155-5p antagomir and SRT1720 downregulated the expression of p-ERK, p-CREB, CGRP, and c-Fos, alleviating microglial activation and decreasing inflammatory substances (TNF-α, MPO). The administration of miR-155-5p agomir or EX527 exacerbated neuroinflammation and central sensitization. Importantly, the miR-155-5p agomir elevated CGRP and c-Fos expression and microglial activation, which could subsequently be alleviated by SRT1720. CONCLUSIONS: These data demonstrate that upregulated miR-155-5p in the TNC participates in the central sensitization of CM. Inhibiting miR-155-5p alleviates neuroinflammation by activating SIRT1 in the TNC of CM mice.


Assuntos
Modelos Animais de Doenças , MicroRNAs/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Nitroglicerina/toxicidade , Sirtuína 1/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/administração & dosagem , MicroRNAs/antagonistas & inibidores , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/metabolismo , Sirtuína 1/antagonistas & inibidores
8.
J Headache Pain ; 22(1): 84, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315403

RESUMO

BACKGROUND: Central sensitization is one of the characters of chronic migraine (CM). Aberrant synaptic plasticity can induce central sensitization. Oxytocin (OT), which is a hypothalamic hormone, plays an important antinociceptive role. However, the antinociceptive effect of OT and the underlying mechanism in CM remains unclear. Therefore, we explored the effect of OT on central sensitization in CM and its implying mechanism, focusing on synaptic plasticity. METHODS: A CM mouse model was established by repeated intraperitoneal injection of nitroglycerin (NTG). Von Frey filaments and radiant heat were used to measure the nociceptive threshold. Repeated intranasal OT and intraperitoneal L368,899, an oxytocin receptor (OTR) antagonist, were administered to investigate the effect of OT and the role of OTR. The expression of calcitonin gene-related peptide (CGRP) and c-fos were measured to assess central sensitization. N-methyl D-aspartate receptor subtype 2B (NR2B)-regulated synaptic-associated proteins and synaptic plasticity were explored by western blot (WB), transmission electron microscope (TEM), and Golgi-Cox staining. RESULTS: Our results showed that the OTR expression in the trigeminal nucleus caudalis (TNC) of CM mouse was significantly increased, and OTR was colocalized with the postsynaptic density protein 95 (PSD-95) in neurons. Repeated intranasal OT alleviated the NTG-induced hyperalgesia and prevented central sensitization in CM mouse. Additionally, the OT treatment inhibited the overexpression of phosphorylated NR2B and synaptic-associated proteins including PSD-95, synaptophysin-1 (syt-1), and synaptosomal-associated protein 25 (snap25) in the TNC of CM mouse and restored the abnormal synaptic structure. The protective effect of OT was prevented by L368,899. Furthermore, the expression of adenylyl cyclase 1 (AC1)/ protein kinase A (PKA)/ phosphorylation of cyclic adenosine monophosphate response element-binding protein (pCREB) pathway was depressed by OT and restored by L368,899. CONCLUSIONS: Our findings demonstrate that repeated intranasal OT eliminates central sensitization by regulating synaptic plasticity via OTR in CM. The effect of OT has closely associated with the down-regulation of AC1/PKA/pCREB signaling pathway, which is activated in CM model. Repeated intranasal OT may be a potential candidate for CM prevention.


Assuntos
Sensibilização do Sistema Nervoso Central , Transtornos de Enxaqueca , Animais , Camundongos , Plasticidade Neuronal , Ocitocina , Receptores de Ocitocina
9.
J Neuroinflammation ; 18(1): 5, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402188

RESUMO

BACKGROUND: Central sensitization is an important pathophysiological mechanism of chronic migraine (CM). According to our previous studies, microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to the central sensitization. The P2X7 receptor (P2X7R) is a purinergic receptor expressed in microglia and participates in central sensitization in chronic pain, but its role in CM is unclear. Numerous studies have shown that P2X7R regulates the level of autophagy and that autophagy affects the microglial activation and inflammation. Recently, autophagy has been shown to be involved in neuropathic pain, but there is no information about autophagy in CM. Therefore, the current study investigated the role of P2X7R in CM and its underlying mechanism, focusing on autophagy regulation. METHODS: The CM model was established by repeated intraperitoneal injection of nitroglycerin (NTG) in mice. A Von Frey filament and radiant heat were used to assess the mechanical and thermal hypersensitivity. Western blotting and immunofluorescence assays were performed to detect the expression of P2X7R, autophagy-related proteins, and the cellular localization of P2X7R. To determine the role of P2X7R and autophagy in CM, we detected the effects of the autophagy inducer, rapamycin (RAPA) and P2X7R antagonist, Brilliant Blue G (BBG), on pain behavior and the expression of calcitonin gene-related peptide (CGRP) and c-fos. In addition, the effect of RAPA and BBG on microglial activation and subsequent inflammation were investigated. RESULTS: The expression of P2X7R was increased and was mainly colocalized with microglia in the TNC following recurrent NTG administration. The autophagic flux was blocked in CM, which was characterized by upregulated LC3-II, and accumulated autophagy substrate protein, p62. RAPA significantly improved the basal rather than acute hyperalgesia. BBG alleviated both basal and acute hyperalgesia. BBG activated the level of autophagic flux. RAPA and BBG inhibited the activation of microglia, limited the inflammatory response, and reduced the expression of CGRP and c-fos. CONCLUSIONS: Our results demonstrate the dysfunction of the autophagic process in CM. Activated autophagy may have a preventive effect on migraine chronification. P2X7R contributes to central sensitization through mediating autophagy regulation and might become a potential target for CM.


Assuntos
Autofagia/fisiologia , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Transtornos de Enxaqueca/metabolismo , Nitroglicerina/toxicidade , Receptores Purinérgicos P2X7/biossíntese , Animais , Autofagia/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/fisiologia , Doença Crônica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos de Enxaqueca/induzido quimicamente , Vasodilatadores/toxicidade
10.
Neuroreport ; 32(2): 144-156, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395186

RESUMO

Although the mechanism of chronic migraine is still unclear, more and more studies have shown that mitochondrial dysfunction plays a possible role in migraine pathophysiology. Silent information regulator 1 (SIRT1) plays a vital role in mitochondrial dysfunction in many diseases. However, there is no research on the role of SIRT1 in mitochondrial dysfunction of chronic migraine. The aim of this study was to explore the role of SIRT1 in mitochondrial dysfunction in chronic migraine. A rat model was established through repeated dural infusions of inflammatory soup for 7 days to simulate chronic migraine attacks. Cutaneous hyperalgesia caused by the repeated infusions of inflammatory soup was detected using the von Frey test. Then, we detected SIRT1 expression in the trigeminal nucleus caudalis. To explore the effect of SIRT1 on mitochondrial dysfunction in chronic migraine rats, we examined whether SRT1720, an activator of SIRT1, altered mitochondrial dysfunction in chronic migraine rats. Repeated infusions of inflammatory soup resulted in cutaneous hyperalgesia accompanied by downregulation of SIRT1. SRT1720 significantly alleviated the cutaneous hyperalgesia induced by repeated infusions of inflammatory soup. Furthermore, activation of SIRT1 markedly increased the expression of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha, transcription factor A, nuclear respiratory factor 1 and nuclear respiratory factor 2 mitochondrial DNA and increased the ATP content and mitochondrial membrane potential. Our results indicate that SIRT1 may have an effect on mitochondrial dysfunction in chronic migraine rats. Activation of SIRT1 has a protective effect on mitochondrial function in chronic migraine rats.


Assuntos
Transtornos de Enxaqueca/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sirtuína 1/genética , Núcleos do Trigêmeo/metabolismo , Animais , Western Blotting , DNA Mitocondrial/metabolismo , Transtornos de Enxaqueca/metabolismo , Mitocôndrias/ultraestrutura , Fator 1 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/ultraestrutura , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos , Fatores de Transcrição/metabolismo , Núcleos do Trigêmeo/citologia , Núcleos do Trigêmeo/ultraestrutura , Regulação para Cima
11.
Neurosci Lett ; 743: 135552, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352285

RESUMO

Central sensitization is one of the important pathological mechanisms of chronic migraine (CM). Metabolic glutamate receptor 5 (mGluR5) mediates pain by activating various intracellular pathways. However, whether mGluR5 contributes to central sensitization in CM and the exact mechanism remains unclear. Male rats were used to establish a CM model by repeated infusions of inflammatory soup (IS) for 7 days to stimulate the activation of the dural nociceptor. The mechanical and thermal thresholds were used to evaluate allodynia, and central sensitization was assessed by measuring calcitonin gene-related peptide (CGRP) and substance P (SP). Microtubule associated protein 1 light chain 3 (LC3) and p62/SQSTM1 were used to assess autophagy. We found that the expression of mGluR5 in the trigeminal nucleus caudalis (TNC) of CM rats was significantly increased. In addition, the downregulation of mGluR5 activated autophagy by inhibiting the mTOR pathway. Moreover, the activation of autophagy alleviated allodynia and central sensitization in CM rats. This study identified a novel strategy for the treatment of CM; the downregulation of mGluR5 in a rat model of CM decreased the expression of the inflammatory factor interleukin-1 beta (IL-1ß) and the central sensitization-associated proteins CGRP and SP by activating autophagy via inhibiting the mTOR pathway.


Assuntos
Autofagia/fisiologia , Sensibilização do Sistema Nervoso Central/fisiologia , Regulação para Baixo/fisiologia , Transtornos de Enxaqueca/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Doença Crônica , Regulação para Baixo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/toxicidade , Masculino , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
12.
J Headache Pain ; 21(1): 139, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276724

RESUMO

BACKGROUND: The mechanism of chronic migraine (CM) is complex, central sensitization is considered as one of the pathological mechanism. Synaptic plasticity is the basis of central sensitization. Metabotropic glutamate receptor 5 (mGluR5) plays a vital role in the synaptic plasticity of the central nervous system. However, whether mGluR5 can promote the central sensitization by regulating synaptic plasticity in CM is unknown. METHODS: Male Wistar rats were used to establish a CM rat model, and the expression of mGluR5 mRNA and protein were detected by qRT-PCR and western blot. The allodynia was assessed by mechanical and thermal thresholds, and central sensitization was assessed by expression of the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) at Serine 133(pCREB-S133) and c-Fos. The synaptic-associated protein postsynaptic density protein 95 (PSD), synaptophysin (Syp), and synaptophysin-1(Syt-1), synaptic ultrastructure, and dendritic spines were detected to explore synaptic plasticity. The expression of PKC, total NR2B(tNR2B), and phosphorylation of NR2B at Tyr1472(pNR2B-Y1472) were detected by western blot. RESULTS: We found that the expression of mGluR5 was upregulated in CM rats. Downregulated the mGluR5 with MPEP alleviated the allodynia and reduced the expression of CGRP, pCREB-S133, c-Fos, PSD, Syp and Syt-1 and synaptic transmission. Moreover, the administration of MPEP inhibited the upregulation of PKC and pNR2B-Y1472. CONCLUSIONS: These results indicate that mGluR5 contributes to central sensitization by regulating synaptic plasticity in CM through the PKC/NR2B signal, which suggests that mGluR5 may be a potential therapeutic candidate for CM.


Assuntos
Transtornos de Enxaqueca , Plasticidade Neuronal , Animais , Hiperalgesia , Masculino , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5
13.
FASEB J ; 34(11): 14780-14798, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931071

RESUMO

The occurrence of pain has always been closely related to a break in the balance between excitatory and inhibitory systems, and the internal relationship between these two systems has not been studied in the pathogenesis of chronic migraine (CM). In this study, we explored how inhibitory interneurons specifically modulate the glutamate-induced hyperexcitability in the periaqueductal gray (PAG) of CM rats. The CM model was established by repeated dural infusion of inflammatory soup (IS) in rats. Then, Baclofen, a gamma-aminobutyric acid type B receptor (GABABR) agonist; CGP35348, a GABABR antagonist; H89, a protein kinase A (PKA) inhibitor; and 8-Bromo-cAMP, a PKA agonist, were applied by intraventricular injection to investigate the detailed CM mechanism. Our results showed that GABABR2 mRNA and protein levels were significantly downregulated (P < .01) in the PAG of CM rats. Similarly, gamma-aminobutyric acid (GABA) and its synthetase glutamate decarboxylase 65/67 (GAD65/67) seriously decreased (P < .01), implying a deficit in the function of inhibitory interneurons in the PAG of CM rats. Afterward, the application of Baclofen and H89 alleviated the IS-evoked hyperalgesia and extenuated vesicular glutamate transporter 2 (VGLUT2), glutamate, calcitonin gene-related peptide (CGRP), and c-Fos expression by regulating the GABABR2/PKA/SynCAM1 pathway in the PAG of CM rats, while the application of CGP35348 and 8-Bromo-cAMP exactly exerted the opposite effect. Importantly, CGP35348 induced an elevation of CGRP, and VGLUT2 expression was relieved by H89. These data suggest that the loss in the function of inhibitory interneurons contributes to glutamate-associated central sensitization through the GABABR2/PKA/SynCAM1 pathway in the PAG of CM rats.


Assuntos
Moléculas de Adesão Celular/metabolismo , Sensibilização do Sistema Nervoso Central , Imunoglobulinas/metabolismo , Interneurônios/metabolismo , Transtornos de Enxaqueca/metabolismo , Receptores de GABA-B/metabolismo , Transdução de Sinais , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Ácido Glutâmico/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Transtornos de Enxaqueca/fisiopatologia , Inibição Neural , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
J Headache Pain ; 21(1): 72, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522232

RESUMO

BACKGROUND: Vestibular migraine has recently been recognized as a novel subtype of migraine. However, the mechanism that relate vestibular symptoms to migraine had not been well elucidated. Thus, the present study investigated vestibular dysfunction in a rat model of chronic migraine (CM), and to dissect potential mechanisms between migraine and vertigo. METHODS: Rats subjected to recurrent intermittent administration of nitroglycerin (NTG) were used as the CM model. Migraine- and vestibular-related behaviors were analyzed. Immunofluorescent analyses and quantitative real-time polymerase chain reaction were employed to detect expressions of c-fos and calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis (TNC) and vestibular nucleus (VN). Morphological changes of vestibular afferent terminals was determined under transmission electron microscopy. FluoroGold (FG) and CTB-555 were selected as retrograde tracers and injected into the VN and TNC, respectively. Lentiviral vectors comprising CGRP short hairpin RNA (LV-CGRP) was injected into the trigeminal ganglion. RESULTS: CM led to persistent thermal hyperalgesia, spontaneous facial pain, and prominent vestibular dysfunction, accompanied by the upregulation of c-fos labeling neurons and CGRP immunoreactivity in the TNC (c-fos: vehicle vs. CM = 2.9 ± 0.6 vs. 45.5 ± 3.4; CGRP OD: vehicle vs. CM = 0.1 ± 0.0 vs. 0.2 ± 0.0) and VN (c-fos: vehicle vs. CM = 2.3 ± 0.8 vs. 54.0 ± 2.1; CGRP mRNA: vehicle vs. CM = 1.0 ± 0.1 vs. 2.4 ± 0.1). Furthermore, FG-positive neurons was accumulated in the superficial layer of the TNC, and the number of c-fos+/FG+ neurons were significantly increased in rats with CM compared to the vehicle group (vehicle vs. CM = 25.3 ± 2.2 vs. 83.9 ± 3.0). Meanwhile, CTB-555+ neurons dispersed throughout the VN. The structure of vestibular afferent terminals was less pronounced after CM compared with the peripheral vestibular dysfunction model. In vivo knockdown of CGRP in the trigeminal ganglion significantly reduced the number of c-fos labeling neurons (LV-CGRP vs. LV-NC = 9.9 ± 3.0 vs. 60.0 ± 4.5) and CGRP mRNA (LV-CGRP vs. LV-NC = 1.0 ± 0.1 vs. 2.1 ± 0.2) in the VN, further attenuating vestibular dysfunction after CM. CONCLUSIONS: These data demonstrates the possibility of sensitization of vestibular nucleus neurons to impair vestibular function after CM, and anti-CGRP treatment to restore vestibular dysfunction in patients with CM.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Núcleos Vestibulares/metabolismo , Animais , Hiperalgesia/metabolismo , Masculino , Nitroglicerina/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Gânglio Trigeminal/metabolismo
15.
J Headache Pain ; 21(1): 4, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937253

RESUMO

BACKGROUND: According to our previous study, microglia P2X4 receptors (P2X4Rs) play a pivotal role in the central sensitization of chronic migraine (CM). However, the molecular mechanism that underlies the crosstalk between microglia P2X4Rs and neurons of the trigeminal nucleus caudalis (TNC) is not fully understood. Therefore, the aim of this study is to examine the exact P2X4Rs signalling pathway in the development of central sensitization in a CM animal model. METHODS: We used an animal model with recurrent intermittent administration of nitroglycerin (NTG), which closely mimics CM. NTG-induced basal mechanical and thermal hypersensitivity were evaluated using a von Frey filament test and an increasing-temperature hot plate apparatus (IITC). We detected P2X4Rs, brain-derived neurotrophic factor (BDNF) and phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK) expression profiles in the TNC. We investigated the effects of a P2X4R inhibitor (5-BDBD) and an agonist (IVM) on NTG-induced hyperalgesia and neurochemical changes as well as on the expression of p-p38-MAPK and BDNF. We also detected the effects of a tropomyosin-related kinase B (TrkB) inhibitor (ANA-12) on the CM animal model in vivo. Then, we evaluated the effect of 5-BDBD and SB203580 (a p38-MAPK inhibitors) on the release and synthesis of BDNF in BV2 microglia cells treated with 50 µM adenosine triphosphate (ATP). RESULTS: Chronic intermittent administration of NTG resulted in chronic mechanical and thermal hyperalgesia, accompanied by the upregulation of P2X4Rs and BDNF expression. 5-BDBD or ANA-12 prevented hyperalgesia induced by NTG, which was associated with a significant inhibition of the NTG-induced increase in phosphorylated extracellular regulated protein kinases (p-ERK) and calcitonin gene related peptide (CGRP) release in the TNC. Repeated administration of IVM produced sustained hyperalgesia and significantly increased the levels of p-ERK and CGRP release in the TNC. Activating P2X4Rs with ATP triggered BDNF release and increased BDNF synthesis in BV2 microglia, and these results were then reduced by 5-BDBD or SB203580. CONCLUSIONS: Our results indicated that the P2X4R contributes to the central sensitization of CM by releasing BDNF and promoting TNC neuronal hyper-excitability. Blocking microglia P2X4R-BDNF signalling may have an effect on the prevention of migraine chronification.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Sensibilização do Sistema Nervoso Central/fisiologia , Microglia/fisiologia , Transtornos de Enxaqueca/fisiopatologia , Receptores Purinérgicos P2X4/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Microglia/metabolismo , Transtornos de Enxaqueca/metabolismo , Nitroglicerina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Neuroscience ; 428: 178-191, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31918010

RESUMO

The specific mechanism of migraine chronification remains unclear. We previously demonstrated that synaptic plasticity was associated with migraine chronification. EphB receptors and their ligands, ephrinBs, are considered to be key molecules regulating the synaptic plasticity of the central nervous system. However, whether they can promote the chronification of migraine by regulating synaptic plasticity is unknown. Therefore, we investigated the role of ephrinB/EphB signaling in chronic migraine (CM). Male Sprague-Dawley rats were used to construct a chronic migraine model by dural infusion of an inflammatory soup for 7 days. We used qPCR, western blot, and immunofluorescence to detect the mRNA and protein levels of EphB2 and ephrinB2. The paw withdrawal latency and paw withdrawal threshold were measured after lateral ventricle treatment with EphB1-Fc (an inhibitor of EphB receptor). Changes in synaptic plasticity were explored by examining synaptic-associated proteins by western blot, dendritic spines of neurons by Golgi-Cox staining, and synaptic ultrastructure by transmission electron microscopy. We found that the expression of EphB2 and ephrinB2 increased in CM. The administration of EphB1-Fc relieved hyperalgesia and changes in synaptic plasticity induced by CM. In addition, EphB1-Fc inhibited the upregulation of NR2B phosphorylation. These results indicate that ephrinB/EphB signaling may regulate synaptic plasticity in CM via NR2B phosphorylation, which suggests the novel idea that ephrinB/EphB signaling may be a target for the treatment of migraine chronification.


Assuntos
Hiperalgesia/fisiopatologia , Transtornos de Enxaqueca/metabolismo , Plasticidade Neuronal/fisiologia , Receptores da Família Eph/metabolismo , Animais , Doença Crônica , Hiperalgesia/metabolismo , Masculino , Transtornos de Enxaqueca/fisiopatologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
17.
J Neurochem ; 155(4): 370-389, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31872442

RESUMO

Central sensitization is the potential pathogenesis of chronic migraine (CM) and is related to persistent neuronal hyperexcitability. Dysfunction of excitatory amino acid transporter 2 (EAAT2) leads to the accumulation of glutamate in the synaptic cleft, which may contribute to central sensitization by overactivating glutamate N-methyl-D-aspartate receptors and enhancing synaptic plasticity. However, the therapeutic potential of CM by targeting glutamate clearance remains largely unexplored. The purpose of this study was to investigate the role of EAAT2 in CM central sensitization and explore the effect of EAAT2 expression enhancer LDN-212320 in CM rats. The glutamate concentration was measured by high-performance liquid chromatography in a rat model of CM. Then, q-PCR and western blots were performed to detect EAAT2 expression, and the immunoreactivity of astrocytes was detected by immunofluorescence staining. To understand the effect of EAAT2 on central sensitization of CM, mechanical and thermal hyperalgesia and central sensitization-associated proteins were examined after administration of LDN-212320. In addition, the expression of synaptic-associated proteins was examined and Golgi-Cox staining was used to observe the dendritic spine density of trigeminal nucleus caudalis neurons. Also, the synaptic ultrastructure was observed by transmission electron microscope (TEM) to explore the changes of synaptic plasticity. In our study, elevated glutamate concentration and decreased EAAT2 expression were found in the trigeminal nucleus caudalis of CM rats, administration of LDN-212320 greatly up-regulated the protein expression of EAAT2, alleviated hyperalgesia, decreased the concentration of glutamate and the activation of astrocytes. Furthermore, reductions in calcitonin gene-related peptide, substance P(SP), and phosphorylated NR2B were examined after administration of LDN-212320. Moreover evaluation of the synaptic structure, synaptic plasticity-, and central sensitization-related proteins indicated that EAAT2 might participate in the CM central sensitization process by regulating synaptic plasticity. Taken together, up-regulation of EAAT2 expression has a protective effect in CM rats, and LDN-212320 may have clinical therapeutic potential. Cover Image for this issue: https://doi.org/10.1111/jnc.14769.


Assuntos
Astrócitos/metabolismo , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/biossíntese , Transtornos de Enxaqueca/metabolismo , Regulação para Cima/fisiologia , Animais , Doença Crônica , Craniotomia/efeitos adversos , Craniotomia/métodos , Mediadores da Inflamação/efeitos adversos , Mediadores da Inflamação/metabolismo , Masculino , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/etiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
J Neuroinflammation ; 16(1): 217, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722730

RESUMO

BACKGROUND: Microglial activation contributes to the development of chronic migraine (CM). The P2Y12 receptor (P2Y12R), a metabolic purinoceptor that is expressed on microglia in the central nervous system (CNS), has been indicated to play a critical role in the pathogenesis of chronic pain. However, whether it contributes to the mechanism of CM remains unknown. Thus, the present study investigated the precise details of microglial P2Y12R involvement in CM. METHODS: Mice subjected to recurrent nitroglycerin (NTG) treatment were used as the CM model. Hyperalgesia were assessed by mechanical withdrawal threshold to electronic von Frey and thermal withdrawal latency to radiant heat. Western blot and immunohistochemical analyses were employed to detect the expression of P2Y12R, Iba-1, RhoA, and ROCK2 in the trigeminal nucleus caudalis (TNC). To confirm the role of P2Y12R and RhoA/ROCK in CM, we systemically administered P2Y12R antagonists (MRS2395 and clopidogrel) and a ROCK2 inhibitor (fasudil) and investigated their effects on microglial activation, c-fos, and calcitonin gene-related peptide (CGRP) expression in the TNC. To further confirm the effect of P2Y12R on microglial activation, we preincubated lipopolysaccharide (LPS)-treated BV-2 microglia with MRS2395 and clopidogrel. ELISA was used to evaluate the levels of inflammatory cytokines. RESULTS: The protein levels of P2Y12R, GTP-RhoA, ROCK2, CGRP, c-fos, and inducible nitric oxide synthase (iNOS) in the TNC were increased after recurrent NTG injection. A double labeling study showed that P2Y12R was restricted to microglia in the TNC. MRS2395 and clopidogrel attenuated the development of tactile allodynia and suppressed the expression of CGRP, c-fos, and GTP-RhoA/ROCK2 in the TNC. Furthermore, fasudil also prevented hyperalgesia and suppressed the expression of CGRP in the TNC. In addition, inhibiting P2Y12R and ROCK2 activities suppressed NTG-induced microglial morphological changes (process retraction) and iNOS production in the TNC. In vitro, a double labeling study showed that P2Y12R was colocalized with BV-2 cells, and the levels of iNOS, IL-1ß, and TNF-α in LPS-stimulated BV-2 microglia were reduced by P2Y12R inhibitors. CONCLUSIONS: These data demonstrate that microglial P2Y12R in the TNC plays a critical role in the pathogenesis of CM by regulating microglial activation in the TNC via RhoA/ROCK pathway.


Assuntos
Microglia/metabolismo , Transtornos de Enxaqueca/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Núcleos do Trigêmeo/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Clopidogrel/farmacologia , Modelos Animais de Doenças , Camundongos , Microglia/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Núcleos do Trigêmeo/efeitos dos fármacos , Valeratos/farmacologia
19.
J Neuroinflammation ; 16(1): 78, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971286

RESUMO

BACKGROUND: Central sensitization is an important mechanism of chronic migraine (CM) and is related to the inflammatory response of microglia. The NOD-like receptor protein 3 (NLRP3) inflammasome may regulate the inflammatory process of microglia in several neurological diseases, but its role in CM is largely unknown. Therefore, the aim of this study was to identify the precise role of microglial NLRP3 in CM. METHODS: An experimental CM mouse model was established by repeated intraperitoneal (i.p) injection with nitroglycerin (NTG). We evaluated the expression levels of NLRP3 and its downstream interleukin (IL)-1ß protein in the trigeminal nucleus caudalis (TNC; which is a central area relevant to migraine pain) at different time points. To further examine the effects of the NLRP3 inflammasome pathway on central sensitization of CM, we examined MCC950, an NLRP3 inflammasome-specific inhibitor, and IL-1ra, an IL-1ß antagonist, whether altered NTG-induced mechanical hyperalgesia of the periorbital area and hind paw. The effect of MCC950 and IL-1ra on c-Fos, phosphorylated extracellular signal-regulated kinase (p-ERK) and calcitonin gene-related peptide (CGRP) expression in the TNC were also analyzed. The cell localization of NLRP3 and IL-1ß in the TNC was evaluated by immunofluorescence staining. RESULTS: Repeated NTG administration induced acute and chronic mechanical hyperalgesia and increased expression of NLRP3 and IL-1ß. Blockade of NLRP3 or IL-1ß reduced NTG-induced hyperalgesia, and this effect was accompanied by a significant inhibition of the NTG-induced increase in p-ERK, c-Fos and CGRP levels in the TNC. Immunofluorescence staining revealed that NLRP3 and IL-1ß were mainly expressed in microglia in the TNC, and the IL-1ß receptor, IL-1R, was mainly expressed in neurons in the TNC. CONCLUSIONS: These results indicate that NLRP3 activation in the TNC participates in the microglial-neuronal signal by mediating the inflammatory response. This process contributes to the central sensitization observed in CM.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Interleucina-1beta/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfonas/uso terapêutico , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Furanos , Hiperalgesia/induzido quimicamente , Indenos , Injeções Intraventriculares , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nitroglicerina/toxicidade , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sulfonamidas , Vasodilatadores/toxicidade
20.
PLoS One ; 14(2): e0213135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30807601

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0106962.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA