Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 131(3): 430-443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877108

RESUMO

BACKGROUND: Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS: We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS: Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS: Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.


Assuntos
Cromatina , Dano ao DNA , Proteína Quinase Ativada por DNA , Doxorrubicina , Proteínas de Membrana , Mieloma Múltiplo , Nucleotidiltransferases , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Cromatina/metabolismo , Cromatina/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Camundongos , Animais , Transdução de Sinais/efeitos dos fármacos
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1056-1060, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37551477

RESUMO

OBJECTIVE: To investigate the efficacy and safety of plerixafor combined with granulocyte colony-stimulating factor (G-CSF) in mobilizing peripheral blood hematopoietic stem cells in patients with lymphoma. METHODS: The clinical data of lymphoma patients who received autologous hematopoietic stem cell mobilization using plerixafor combined with G-CSF from January 2019 to December 2021 were retrospectively analyzed. The patients received 3 kinds of mobilization regimens: front-line steady-state mobilization, preemptive intervention, and recuse mobilization. The acquisition success rate, excellent rate of collection, and incidence of treatment-related adverse reaction were counted. The influence of sex, age, disease remission status, bone marrow involvement at diagnosis, chemotherapy lines, number of chemotherapy, platelet count and number of CD34+ cells on the day before acquisition in peripheral blood on the collection results were analyzed to identify the risk factors associated with poor stem cell collection. RESULTS: A total of 43 patients with lymphoma were enrolled, including 7 cases who received front-line steady-state mobilization, 19 cases who received preemptive intervention, and 17 cases who received recuse mobilization. The overall acquisition success rate was 58.1% (25/43) after use of plerixafor combined with G-CSF, and acquisition success rate of front-line steady-state mobilization, preemptive intervention, and recuse mobilization was 100%, 57.9%(11/19), and 41.2%(7/17), respectively. The excellent rate of collection was 18.6%(8/43). A total of 15 patients experienced mild to moderate treatment-related adverse reactions. The number of CD34+ cells < 5 cells/µl in peripheral blood on the day before collection was an independent risk factor affecting stem cell collection. CONCLUSIONS: Plerixafor combined with G-CSF is a safe and effective mobilization regimen for patients with lymphoma. The number of CD34+ cells in peripheral blood on the day before collection is an predictable index for the evaluation of stem cell collection.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Linfoma , Mieloma Múltiplo , Humanos , Antígenos CD34/metabolismo , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/uso terapêutico , Linfoma/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Estudos Retrospectivos , Transplante Autólogo
3.
Dev Genes Evol ; 220(5-6): 151-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20809137

RESUMO

Dmrt is a family of genes related to the sexual regulators Doublesex of Drosophila melanogaster and Mab-3 of Caenorhabditis elegans. Dmrt genes are widely conserved and known for their involvement in sex determination and differentiation across phyla. In this study, we report here the identification of a novel Dmrt gene, named EsDmrt-like, from Chinese mitten crab Eriocheir sinensis. EsDmrt-like encodes a protein of 236 amino acids without intron. The protein contains a conserved DNA-binding DM domain that is characteristic of Dmrt genes. The DM domain shares 98% identity with that of Drosophila Dmrt99B and vertebrate Dmrt5, but outside the DM domain, there is little homology in sequence and no other conserved domain such as DMA specific to the Dmrt99B and Dmrt3-5. Interestingly, the expression pattern of EsDmrt-like is quite similar with that of vertebrate Dmrt1. Reverse transcription-polymerase chain reaction showed that EsDmrt-like transcripts were detectable only in testis with much higher expression at immature stage. In situ hybridization to gonad sections indicated that the EsDmrt-like mRNA was exclusively localized in Sertoli cells around the periphery of seminiferous tubules and developing germ cells including spermatogonium, spermatocyte, and spermatid, but absent in spermatozoa. This finding strongly suggests an essential role for EsDmrt-like in the male testicular development/differentiation of the crab.


Assuntos
Braquiúros/genética , Braquiúros/fisiologia , Células de Sertoli/citologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Sequência Conservada , Expressão Gênica , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Células de Sertoli/metabolismo , Processos de Determinação Sexual , Espermatogênese/genética , Testículo/citologia , Testículo/metabolismo , Distribuição Tecidual , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA