RESUMO
Given the ongoing requirements for versatility, sustainability, and biocompatibility in wearable applications, cellulose nanocrystal (CNC) photonic materials emerge as excellent candidates for multi-responsive wearable devices due to their tunable structural color, strong electron-donating capacity, and renewable nature. Nonetheless, most CNC-derived materials struggle to incorporate color-changing and electrical sensing into one system since the self-assembly of CNCs is incompatible with conventional conductive mediums. Here we report the design of a conductive photonic patch through constructing a CNC/polyvinyl alcohol hydrogel modulated by phytic acid (PA). The introduction of PA significantly enhances the hydrogen bonding interaction, resulting in the composite film with impressive flexibility (1.4 MJ m-3) and progressive color changes from blue, green, yellow, to ultimately red upon sweat wetting. Interestingly, this system simultaneously demonstrates selective and sensitive electrical sensing functions, as well as satisfactory biocompatibility, biodegradability, and breathability. Importantly, a proof-of-concept demonstration of a skin-adhesive patch is presented, where the optical and electrical dual-signal sweat sensing allows for intuitive visual and multimode electric localization of sweat accumulation during physical exercises. This innovative interactive strategy for monitoring human metabolites could offer a fresh perspective into the design of wearable health-sensing devices, while greatly expanding the applications of CNC-based photonic materials in medicine-related fields.
RESUMO
OBJECTIVE: We aim to investigate the association between prognosis and outcomes following myocardial ischemia-reperfusion injury, as well as peripheral blood levels of NLRP3 and the triglyceride-glucose index (TyG). METHODS: A total of 100 patients who underwent emergency coronary intervention following myocardial infarction confirmed by coronary angiography at our hospital between October 2021 and May 2023 were included in this study. Patients were stratified into two groups based on their prognoses: the control group (n = 73), which did not experience new myocardial infarctions or require hospitalization for heart failure or suffer sudden cardiac death post-interventional treatment; and the observation group (n = 27), which experienced one or more cardiovascular events post-treatment. Patient demographics were obtained from clinical records while biochemical analyses assessed peripheral blood triglycerides, blood glucose levels, and TyG index. Additionally, ELISA measurements determined levels of NLRP3 as well as inflammatory factors IL-6, TNF-α, and CRP in peripheral blood samples. Cardiac function was evaluated according to NYHA standards. Univariable Cox regression analysis identified factors influencing patient prognosis while Pearson correlation analysis examined relationships among prognosis, outcomes following myocardial ischemia-reperfusion injury, TyG index, and peripheral blood NLRP3. RESULTS: No significant differences were observed in the general characteristics between the two patient groups (P > 0.05). However, the observation group exhibited higher levels of peripheral blood triglycerides, blood glucose, and TyG index compared to the control group (P < 0.05). Additionally, levels of NLRP3 and inflammatory factors IL-6, TNF-α, and CRP were elevated in the observation group compared to the control group (P < 0.05). Cardiac function impairment was more pronounced in the observation group (P < 0.05). Notably, TyG index and peripheral blood NLRP3 demonstrated higher risk ratios compared to other biomarkers (P < 0.05), indicating their significance in prognosis and outcomes. Elevated levels of NLRP3 and TyG index were associated with poorer recovery of cardiac function, increased rehospitalization rates, and higher mortality (P < 0.05). CONCLUSION: Elevated NLRP3 levels and an increased TyG index are strongly associated with impaired cardiac function and heightened risk of cardiovascular events. These findings suggest that these biomarkers may serve as crucial prognostic indicators following myocardial ischemia-reperfusion injury.
Assuntos
Glicemia , Traumatismo por Reperfusão Miocárdica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Triglicerídeos , Humanos , Masculino , Feminino , Prognóstico , Proteína 3 que Contém Domínio de Pirina da Família NLR/sangue , Pessoa de Meia-Idade , Triglicerídeos/sangue , Traumatismo por Reperfusão Miocárdica/sangue , Glicemia/análise , Glicemia/metabolismo , Idoso , Biomarcadores/sangueRESUMO
Introduction: Ampelopsis grossedentata (vine tea), a high polyphenol content antioxidant plant resource, is renowned for its medicinal benefits. This study aimed to investigate the effects of Ampelopsis grossedentata extract (AGE) on anti-inflammatory and antioxidant ability, enhancement of intestinal immunity, improvement of intestinal structure, and regulation of gut microbiota in swine. Methods: A total of 135 weaned piglets were randomly divided into three groups: a control group, a low-dose group, and a high-dose group. Pigs were weighed and blood was collected on days 36, 85, and 154. The feed intake was recorded daily to calculate growth performance parameters. On day 154, five to six pigs in each group were randomly selected and euthanized to obtain a small intestine to investigate the effects of AGE on anti-inflammatory and antioxidant abilities and gut microbiota. Results: The results showed that 500 mg/kg AGE increased the expression of anti-inflammatory and immune cytokines (IL-10, IgG, and IgA) (p < 0.05, p < 0.01) and decreased the expression of proinflammatory cytokines (IL-1ß) (p < 0.05) in serum. Additionally, 500 mg/kg AGE enhanced the antioxidant capacity by increasing the GSH-Px, CAT, and SOD (p < 0.05, p < 0.01). Discussion: A total of 500 mg/kg AGE significantly increased the abundance of gut microbiota, enhanced the gut barrier, and modulated gut immunity. During the piglet phase, 500 mg/kg AGE increased the relative abundance of Prevotella (p < 0.05). During the growing-finishing phase, 500 mg/kg AGE increased the relative abundance of unclassified_f__Lachnospiraceae and Bacteroides (p < 0.05, p < 0.01). Overall, we recommended 500 mg/kg AGE as a routine addition dose for swine to improve porcine growth performance and intestinal health.
RESUMO
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Microambiente Tumoral , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Reprogramação Celular , Metástase Neoplásica , Reprogramação MetabólicaRESUMO
Cytochromes P450 (P450s) are one of the largest enzymatic protein families and play critical roles in the synthesis and metabolism of plant secondary metabolites. Astragaloside IV (AS-IV) is one of the primary active components in Astragalus herbs, exhibiting diverse biological activities and pharmacological effects. However, P450s involved in the astragaloside biosynthesis have not been systematically analyzed in Astragalus mongholicus (A. mongholicus). In this study, we identified 209 P450 genes from the genome of A. mongholicus (AmP450s), which were classified into nine clans and 47 families and performed a systematic overview of their physical and chemical properties, phylogeny, gene structures and conserved motifs. Weighted gene co-expression network analysis (WGCNA) revealed that AmP450s are critical in the astragaloside biosynthesis pathway. The expression levels of these AmP450s were verified by quantitative real-time PCR (qRT-PCR) analysis in the root, stem and leaf, showing that most AmP450s are abundant in the root. Additionally, the correlation analysis between gene expressions and AS-IV content showed that twelve AmP450s, especially CYP71A28, CYP71D16 and CYP72A69, may have significant potential in the biosynthesis of astragaloside. This study systematically investigates the P450s of A. mongholicus and offers valuable insights into further exploring the functions of CYP450s in the astragaloside biosynthesis pathway.
Assuntos
Astrágalo , Sistema Enzimático do Citocromo P-450 , Regulação da Expressão Gênica de Plantas , Filogenia , Saponinas , Triterpenos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Saponinas/biossíntese , Saponinas/genética , Saponinas/metabolismo , Triterpenos/metabolismo , Astrágalo/genética , Astrágalo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão GênicaRESUMO
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Assuntos
Senescência Celular , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Animais , Reprogramação MetabólicaRESUMO
The rhizosphere environment of plants, which harbors halophilic bacterial communities, faces significant challenges in coping with environmental stressors, particularly saline soil properties. This study utilizes a high-throughput 16S rRNA gene-based amplicon sequencing to investigate the variations in bacterial community dynamics in rhizosphere soil (RH), root surface soil (RS), root endophytic bacteria (PE) compartments of Suaeda salsa roots, and adjoining soils (CK) across six locations along the eastern coast of China: Nantong (NT), Yancheng (YC), Dalian (DL), Tianjin (TJ), Dongying (DY), and Qingdao (QD), all characterized by chloride-type saline soil. Variations in the physicochemical properties of the RH compartment were also evaluated. The results revealed significant changes in pH, electrical conductivity, total salt content, and ion concentrations in RH samples from different locations. Notably, the NT location exhibited the highest alkalinity and nitrogen availability. The pH variations were linked to HCO3- accumulation in S. salsa roots, while salinity stress influenced soil pH through H+ discharge. Despite salinity stress, enzymatic activities such as catalase and urease were higher in soils from various locations. The diversity and richness of bacterial communities were higher in specific locations, with Proteobacteria dominating PE samples from the DL location. Additionally, Vibrio and Marinobacter were prevalent in RH samples. Significant correlations were found between soil pH, salinity, nutrient content, and the abundance and diversity of bacterial taxa in RH samples. Bioinformatics analysis revealed the prevalence of halophilic bacteria, such as Bacillus, Halomonas, and Streptomyces, with diverse metabolic functions, including amino acid and carbohydrate metabolisms. Essential genes, such as auxin response factor (ARF) and GTPase-encoding genes, were abundant in RH samples, suggesting adaptive strategies for harsh environments. Likewise, proline/betaine transport protein genes were enriched, indicating potential bioremediation mechanisms against high salt stress. These findings provide insight into the metabolic adaptations facilitating resilience in saline ecosystems and contribute to understanding the complex interplay between soil conditions, bacterial communities, and plant adaptation.
Assuntos
Bactérias , Chenopodiaceae , Raízes de Plantas , RNA Ribossômico 16S , Microbiologia do Solo , China , Chenopodiaceae/microbiologia , Raízes de Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Rizosfera , Solo/química , Salinidade , Microbiota , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
The effects of dynamic high-pressure microfluidization (DHPM) treatment on the rheological properties, multiscale structure and in vitro digestibility of complex of maize starch (MS), konjac glucomannan (KGM), and bamboo leaf flavonoids (BLFs) were investigated. Compared with MS, the MS-KGM-BLF complex exhibited reduced viscosity and crystallinity, along with increased lamellar thickness to 10.26 nm. MS-KGM-BLF complex had lower viscosity after DHPM treatment. The highest ordered structure and crystallinity were observed at 50 MPa, with the α value increasing from 3.40 to 3.59 and the d value decreasing from 10.26 to 9.81 nm. However, higher DHPM pressures resulted in a decrease in the α value and an increase in the d value. The highest gelatinization enthalpy and resistant starch content were achieved at 100 MPa DHPM, while the fractal structure shifted from surface fractal to mass fractal at 150 MPa. This study presents an innovative method for enhancing the properties of MS.
Assuntos
Digestão , Flavonoides , Mananas , Folhas de Planta , Pressão , Reologia , Amido , Zea mays , Amido/química , Folhas de Planta/química , Mananas/química , Zea mays/química , Flavonoides/química , Viscosidade , Bambusa/química , Extratos Vegetais/química , Amorphophallus/químicaRESUMO
The membrane emulsification technique enables the self-assembly of cellulose nanocrystals (CNCs) confined within a spherical geometry for large-scale production. The resulting solid microspheres show long-range ordering with chiral nematic structures, and this fascinating hierarchical architecture can even be transferred to mesoporous carbon or silica microparticles by a sacrificial template method.
RESUMO
Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.
Assuntos
Histidina , Hidrogéis , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Hidrogéis/química , Humanos , Histidina/química , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/diagnóstico , Linhagem Celular Tumoral , Separação Celular/métodos , Polímeros/química , Impressão Molecular/métodosRESUMO
BACKGROUND: Transcranial direct current stimulation (tDCS) is widely used in motor recovery. Nevertheless, whether tDCS improves motor learning in healthy older adults is still controversial. This review aims to investigate the effectiveness of tDCS on motor learning in healthy elderly individuals. METHODS: The PubMed, Cochrane Library, Web of Science and Embase databases were initially searched from inception to December 5, 2022. The standard mean difference (SMD) with the corresponding 95% confidence intervals (CIs) were analysed via random-effect models. RESULTS: Compared with the sham group, no significant effects were found regarding improvement in motor learning based on the speed or accuracy of the task and reaction time for the tDCS intervention group. After subgroup analysis, a significant effect was found for improved motor learning based on reaction time in the primary motor cortex (M1)-cerebellar group. CONCLUSIONS: This review revealed that tDCS had no significant effect on improving the speed or accuracy of motor learning in healthy elderly adults. However, it has a significant effect on improving the motor learning ability based on the reaction time of the task (mainly referring to the tDCS stimulation position of M1 and cerebellar), although the results have obvious heterogeneity and uncertainty.
RESUMO
Background: The prevalence of cardiovascular disease (CVD) is rapidly increasing globally. With a concerning increase among adolescents due to unhealthy habits, obesity, and hypertension, understanding the current status of knowledge, attitudes, and practices (KAP) related to CVD prevention among middle school students is crucial for developing effective school-based health programs to prevent CVD. Methods: The analytic cross-sectional survey is used in questionnaires to assess KAP related to CVD prevention among middle school students (N = 17,731) from 50 schools across 16 provinces in China in June-July 2023. The pass rate of KAP scores is categorized as good and poor. Independent predictors of good KAP of CVD prevention are ascertained using a binary logistic regression model. Results: The study surveyed 8,118 (45.78%) junior high school students and 9,613 (54.22%) high school students. The overall mean [standard deviation (SD)] for the knowledge, attitude, and practice scores were 26.88 (8.12), 53.53 (7.22), and 39.80 (5.96), respectively. The knowledge scores had the lowest pass rate at 56.89%. Only 6.83% of the students know "the definition of blood pressure in adolescents." Attitudes toward health were positive, though the attitude regarding "the danger of prolonged sedentary to cardiovascular health" scored lowest at 73.55%. The practice section had a pass rate of 89.30%; 40.27% of students reported that they spend more than an hour a day on screens. Only one-third of the students would go to bed before 12 o'clock. In univariate analysis, junior high school and high school students differed significantly in knowledge and practice (p < 0.001), but attitude did not differ significantly (p = 0.103). Conclusion: The majority of students lack sufficient knowledge about CVD. It is also found that socioeconomic background, family environment, and educational levels have an impact on cardiovascular health behaviors among students. Strengthening health education involving students, parents, teachers, and communities is essential to promote health knowledge and practices among adolescents.
Assuntos
Doenças Cardiovasculares , Adolescente , Humanos , Estudos Transversais , Doenças Cardiovasculares/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Promoção da Saúde , Estudantes , China/epidemiologiaRESUMO
Integrating optically active components into chiral photonic cellulose to fabricate circularly polarized luminescent materials has transformative potential in disease detection, asymmetric reactions, and anticounterfeiting techniques. However, the lack of cellulose-based left-handed circularly polarized light (L-CPL) emissions hampers the progress of these chiral functionalizations. Here, this work proposes an unprecedented strategy: incorporating a chiral nematic organization of hydroxypropyl cellulose with robust aggregation-induced emission luminogens to generate intense L-CPL emission. By utilizing N,N-dimethylformamide as a good solvent for fluorescent components and cellulose matrices, this work produces a right-handed chiral nematic structure film with a uniform appearance in reflective and fluorescent states. Remarkably, this system integrates a high asymmetric factor (0.51) and an impressive emission quantum yield (55.8%) into one fascinating composite. More meaningfully, this approach is versatile, allowing for the incorporation of luminogen derivatives emitting multicolored L-CPL. These chiral fluorescent films possess exceptional mechanical flexibility (toughness up to 0.9 MJ m-3) and structural stability even under harsh environmental exposures, making them promising for the fabrication of various products. Additionally, these films can be cast on the fabrics to reveal multilevel and durable anticounterfeiting capabilities or used as a chiral light source to induce enantioselective photopolymerization, thereby offering significant potential for diverse practical applications.
RESUMO
In this study, the interaction between bamboo shoot polysaccharides (BSP) and lotus root starch (LS) during gelatinization, retrogradation, and digestion of starch was investigated. The addition of BSP inhibited the gelatinization of LS and decreased the peak viscosity, valley viscosity, and final viscosity. Amylose leaching initially increased and then decreased with the increase in BSP addition. The apparent viscosity and viscoelasticity of LS decreased with the increase in BSP addition. Moreover, 3 % BSP increased the hardness and cohesiveness of LS gel, whereas 6 %-15 % BSP decreased them. In addition, 3 %-6 % BSP promoted the uniform distribution of water molecules in the starch paste, whereas the addition of 12 % and 15 % BSP resulted in the inhomogeneous distribution of the water. The retrogradation degree of LS gel gradually increased with the increase in BSP addition from 3 % to 6 %, whereas 9 %-15 % BSP restricted the short-term and long-term retrogradation of LS. After 12 % BSP was added, the RDS content reduced by 11.6 %, the RS content significantly increased by 75 %, and the digestibility of starch decreased. This work revealed the interaction between BSP and LS during starch gelatinization, retrogradation, and digestion to improve the physicochemical properties and digestive characteristics of LS.
Assuntos
Amilose , Amido , Amido/química , Amilose/química , Viscosidade , Água/química , DigestãoRESUMO
Pancreatic cancer (PC) is a digestive malignancy with worse overall survival. Tumor immune environment (TIME) alters the progression and proliferation of various solid tumors. Hence, we aimed to detect the TIME-related classifier to facilitate the personalized treatment of PC. Based on the 1612 immune-related genes (IRGs), we classified patients into Immune_rich and Immune_desert subgroups via consensus clustering. Patients in distinct subtypes exhibited a difference in sensitivity to immune checkpoint blockers (ICB). Next, the immune-related signature (IRS) model was established based on 8 IRGs (SYT12, TNNT1, TRIM46, SMPD3, ANLN, AFF3, CXCL9 and RP1L1) and validated its predictive efficiency in multiple cohorts. RT-qPCR experiments demonstrated the differential expression of 8 IRGs between tumor and normal cell lines. Patients who gained lower IRS score tended to be more sensitive to chemotherapy and immunotherapy, and obtained better overall survival compared to those with higher IRS scores. Moreover, scRNA-seq analysis revealed that fibroblast and ductal cells might affect malignant tumor cells via MIF-(CD74+CD44) and SPP1-CD44 axis. Eventually, we identified eight therapeutic targets and one agent for IRS high patients. Our study screened out the specific regulation pattern of TIME in PC, and shed light on the precise treatment of PC.
Assuntos
Neoplasias Pancreáticas , Transcriptoma , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Imunoterapia , Algoritmos , Linhagem Celular , Prognóstico , Microambiente Tumoral/genética , Proteínas do OlhoRESUMO
Janus adhesive hydrogels have one-sided adhesive properties and hold promising applications in the health care field. However, a simple method for synthesizing Janus hydrogels is still lacking. In this study, we introduce an innovative method to prepare Janus hydrogels by harnessing a fundamental phenomenon: the self-aggregation of surfactants at high concentrations at the water-air interface. By combining a small amount [0.8 to 3.2 weight %, relative to mass of acrylamide (AM)] of sodium α-linoleate (LAS) with AM through free radical polymerization, we have synthesized Janus adhesive hydrogels. The Janus hydrogels exhibit remarkable adhesive strength and adhesive differences, with the top side (84 J m-2) being 21 times stronger than the bottom side, also an excellent elongation rate. Through comprehensive experiments, including chemical composition, surface morphology, and molecular dynamics (MD) simulations, we thoroughly investigate the mechanisms of the hydrogel's heterogeneous adhesion. This study presents an easy, efficient, and innovative method for preparing one-sided adhesive hydrogels.
RESUMO
This study investigated the effects of ultrasound treatment on the physicochemical properties, digestion properties, and multiscale structure of a lotus root starch (LS) and bamboo shoot polysaccharide (BSP) composite system. It also preliminarily revealed the mechanism underlying the modification effect of ultrasound treatment. After 180-360 W ultrasound treatment, the viscosity, thixotropy, and gel viscoelasticity of the LS/BSP paste increased. However, treatment with the ultrasound power of 540 and 720 W decreased viscoelasticity. After 14 days of retrogradation, the hardness and cohesiveness of the LS/BSP gel increased under 180 and 360 W ultrasound treatment but decreased under 540 and 720 W ultrasound treatment. After 540 W ultrasound treatment, RDS content decreased by 17.2 % and resistant starch content increased by 32.5 %. After 180 min of in vitro digestion, the hydrolysis rate of LS/BSP decreased from 97.82 % to 93.13 % as the ultrasound power increased to 540 W. Ultrasound promoted the uniform dispersion of BSP in the starch paste and the movement, orientation, rearrangement, and aggregation of starch and BSP molecular chains. These effects further enhanced the interaction between BSP and starch, resulting in the formation of a dense paste structure with strong resistance to digestive enzymes. This work revealed the mechanism of the effects of ultrasound treatment on LS/BSP and found that 360-540 W ultrasound treatment could improve the physicochemical properties and digestion properties of LS/BSP.
Assuntos
Amido , Amido/química , Géis , Viscosidade , HidróliseRESUMO
In order to realize the high-precision assembly of the mirror of the aeronautical optical system, a semi-kinematic flexible support structure applied to the airborne field was designed. This paper studies the support principle and assembly method of flexible support of mirror. Firstly, according to the kinematic theory of space mechanism, the spatial degrees of freedom of the mirror were theoretically analyzed. Then, in view of the difficulties encountered in the assembly and application of the mirror, a flexible support structure was designed. Then, the design results were verified by means of finite element analysis. Finally, the processing and assembly of a flexible support structure of the mirror was completed, and the relevant experimental tests were carried out. The experimental results show that the accuracy of the mirror after assembly with flexible support structure is better than λ/50 (λ = 632.8 nm), and the mass is less than 2 kg. The model fundamental frequency modal of the whole assembly is 645 Hz, which is higher than the design requirement. All simulation and test results show that the flexible support structure works well, meets the requirements of aviation optical system, and has the advantages of simple assembly, high precision, stability and reliability.
RESUMO
The vibrationally resolved pyrene fluorescence probe method is once popular but now languished, because the vibrationally resolved patterns of pyrene with limited sensitivity and concentration independence have not been updated for over 50 years. During investigation on the polymer interdiffusion of a latex film, it is found that a pyrene acylhydrazone whose vibrationally resolved fluorescence pattern contradictory to those reported in pyrene and most pyrene derivatives. The pyrene acylhydrazone has sensitive concentration- and polarity-dependent fluorescence spectra (the sensitivity on polarity is at most 26 times higher than the old vibrationally resolved patterns), and the sensitivity well remains when it is copolymerized in a polymer. The vibrationally resolved spectrum of this pyrene acylhydrazone is a powerful fluorescence probe, which would be as useful as the pyrene excimer probe nowadays popular.
Assuntos
Corantes Fluorescentes , Polímeros , Fluorescência , Espectrometria de Fluorescência/métodos , PirenosRESUMO
π-π stacking strategies can enhance the stability performance of delivery platforms but are often restricted by incomplete drug release performance, even with the help of crosslinking strategies. Therefore, there has been considerable interest in enhancing the drug release performance by disrupting the π-π stacking region (structural rearrangements). Herein, we synthesized poly(3-(isobutyloxy)-2-oxopropyl benzoate)-b-poly(2-hydroxybutyl methacrylate)-co-poly((ethylene glycol)methylether methacrylate) [PBOOPMA-b-P(HBMA-co-PEGMA), PHB] and revealed the drug release mechanism of PHB-based micelles. The structural rearrangements derived from the crosslinking strategy were revealed to improve the early release performance by 43-55% using micellar dissolutions. Moreover, the esterase-responsive strategy was elucidated to induce reassembly with 77-79% size variation, intensifying the structural rearrangements, which was also synergistic with the crosslinking strategy. Based on the advantages of improving drug release performance, the esterase-responsive strategy was considered a promising candidate for enhancing late release performance. Meanwhile, it is believed that such responsive modulation (crosslinking, esterase-responsive) in the π-π stacking region will become highly promising for subsequent research. Finally, the biosafety of 95.81% at 400 mg L-1 and drug cytotoxicity of IC50 ≈ 2.5 mg L-1 of PHB-EDE@CPT were also validated, confirming the broad application prospects of PHB-based crosslinked micelles.