Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Stress Chaperones ; 29(3): 440-455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653383

RESUMO

This study aimed to investigate the changes in oxidative stress, adenosine monophosphate-activated protein kinase (AMPK), connexin43 (Cx43), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) expression, and extracellular matrix (ECM) in the gastric smooth muscle tissues of rats with diabetic gastroparesis (DGP) and high glucose-cultured gastric smooth muscle cells, determine the existence of oxidative stress-AMPK-Cx43-NLRP3 pathway under high glucose condition, and the involvement of this pathway in ECM remodeling in DGP rats. The results showed that with increasing duration of diabetes, oxidation stress levels gradually increased, the AMPK activity decreased first and then increased, NLRP3, CX43 expression, and membrane/cytoplasm ratio of Cx43 expression were increased in the gastric smooth muscle tissues of diabetic rats. Changes in ECM of gastric smooth muscle cells were observed in DGP rats. The DGP group showed higher collagen type I content, increased expression of Caspase-1, transforming growth factor-beta 3 (TGF-ß3), and matrix metalloproteinase-2 (MMP-2), decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) expression, and higher interleukin-1 beta content when compared with the control group. For gastric smooth muscle cells cultured under higher glucose, the MMP-2 and TGF-ß3 expression was decreased, TGF-ß1 and TIMP-1 expression was increased, the interleukin-1 beta content was decreased in cells after inhibition of NLRP3 expression; the NLRP3 and Caspase-1 expression was decreased, and adenosine triphosphate content was lower after inhibition of Cx43; the expression of NLRP3, Caspase-1, P2X7, and the membrane/cytoplasm ratio of CX43 expression was decreased in cells after inhibition of AMPK and oxidative stress, the phospho-AMPK expression was also decreased after suppressing oxidative stress. Our findings suggest that high glucose induced the activation of the AMPK-Cx43-NLRP3 pathway through oxidative stress, and this pathway was involved in the ECM remodeling of gastric smooth muscles in DGP rats by regulating the biological functions of TGF-ß3, TGF-ß1, MMP-2, and TIMP-1.


Assuntos
Proteínas Quinases Ativadas por AMP , Conexina 43 , Diabetes Mellitus Experimental , Matriz Extracelular , Gastroparesia , Miócitos de Músculo Liso , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Matriz Extracelular/metabolismo , Conexina 43/metabolismo , Gastroparesia/metabolismo , Gastroparesia/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Glucose/metabolismo , Estômago/patologia
2.
Small Methods ; 7(7): e2300168, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148175

RESUMO

Lithium metal anode attracts great attention because of its high specific capacity and low redox potential. However, the uncontrolled dendrite growth and its infinite volume expansion during cycling are extremely detrimental to the practical application. The formation of a solid electrolyte interphase (SEI) plays a decisive role in the behavior of lithium deposition/dissolution during electrochemical processing. Clarifying the essential relationship between SEI and battery performance is a priority. Research in SEI is accelerated in recent years by the use of advanced simulation tools and characterization techniques. The chemical composition and micromorphology of SEIs with various electrolytes are analyzed to clarify the effects of SEI on the Coulombic efficiency and cycle life. In this review, the recent research progress focused on the composition and structure of SEI is summarized, and various advanced characterization techniques applied to the investigation of SEI are discussed. The comparisons of the representative experimental results and theoretical models of SEI in lithium metal batteries (LMBs) are exhibited, and the underneath mechanisms of interaction between SEI and the electrochemical properties of the cell are highlighted. This work offers new insights into the development of safe LMBs with higher energy density.

3.
J Org Chem ; 88(6): 3794-3801, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861957

RESUMO

An electricity-promoted method for Friedel-Crafts acylation of biarylcarboxylic acids is described in this research. Various fluorenones can be accessed in up to 99% yields. During the acylation, electricity plays an essential role, which might motivate the chemical equilibrium by consuming the generated TFA. This study is predicted to provide an avenue to realize Friedel-Crafts acylation in a more environmentally friendly process.

4.
Theor Appl Genet ; 136(3): 31, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894705

RESUMO

The compact (cp) phenotype in cucumber (Cucumis sativus L.) is an important plant architecture-related trait with a great potential for cucumber improvement. In this study, we conducted map-based cloning of the cp locus, identified and functionally characterized the candidate gene. Comparative microscopic analysis suggested that the short internode in the cp mutant is due to fewer cell numbers. Fine genetic mapping delimited cp into an 8.8-kb region on chromosome 4 harboring only one gene, CsERECTA (CsER) that encodes a leucine-rich repeat receptor-like kinase. A 5.5-kb insertion of a long terminal repeat retrotransposon in the 22nd exon resulted in loss-of-function of CsER in the cp plant. Spatiotemporal expression analysis in cucumber and CsER promoter-driven GUS assays in Arabidopsis indicated that CsER was highly expressed in the stem apical meristem and young organs, but the expression level was similar in the wild type and mutant cucumber plants. However, CsER protein accumulation was reduced in the mutant as revealed by western hybridization. The mutation in cp also did not seem to affect self-association of CsER for formation of dimers. Ectopic expression of CsER in Arabidopsis was able to rescue the plant height of the loss-of-function AtERECTA mutant, whereas the compact inflorescence and small rosette leaves of the mutant could be partially recovered. Transcriptome profiling in the mutant and wild type cucumber plants revealed hormone biosynthesis/signaling, and photosynthesis pathways associated with CsER-dependent regulatory network. Our work provides new insights for the use of cp in cucumber breeding.


Assuntos
Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Retroelementos/genética , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Fenótipo , Proteínas Quinases/genética , Sequências Repetidas Terminais , Treonina/genética , Treonina/metabolismo , Serina/genética , Serina/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Protoplasma ; 260(3): 821-837, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36322293

RESUMO

NEDD8/RUB, as a ubiquitin-like protein, participates in the post-translational modification of protein and requires unique E1, E2, and E3 enzymes to bind to its substrate. The RUB E1 activating enzyme and E2 conjugating enzyme play a significant role in the neddylation. However, it is unknown whether RUB E1 and E2 exist in pepper and what its function is. In this study, a total of three putative RUB E1 and five RUB E2 genes have been identified in the pepper genome. Subsequently, their physical and chemical properties, gene structure, conserved domains and motifs, phylogenetic relationship, and cis-acting elements were analyzed. The structure and conserved domain of RUB E1 and E2 are similar to that of Arabidopsis and tomato. The RUB E1 and E2 genes were randomly distributed on seven chromosomes, and there were two pairs of collinearity between pepper and Arabidopsis and eight pairs of collinearity between pepper and tomato. Phylogenetic analysis reveals that RUB E1 and E2 genes of pepper have a closer relationship with that of tomato, potato, and Nicotiana attenuate. The cis-elements of RUB E1 and E2 genes contained hormone response and stress response. RUB E1 and E2 genes were expressed in at least one tissue and CaRCE1.3 and CaRCE2.1 were exclusively expressed in flowers and anthers. Moreover, the expression of RUB E1 genes (CaECR1, CaAXR1.1, and CaAXR1.2) and RUB E2 genes (CaRCE1.1, CaRCE1.2, and CaRCE2.1) was increased to varying degrees under low-temperature, drought, salt, ABA, and IAA treatments, while CaRCE1.3 and CaRCE2.2 were down-regulated under low-temperature treatment. In addition, these genes were hardly expressed under MeJA treatment. In summary, this study provides a theoretical foundation to explore the role of RUB E1 and E2 in the response of plants to stress.


Assuntos
Arabidopsis , Capsicum , Capsicum/genética , Arabidopsis/genética , Filogenia , Estresse Fisiológico/genética , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
6.
Funct Integr Genomics ; 22(6): 1411-1431, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36138269

RESUMO

The cellulose synthase gene superfamily contains cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, which synthesize cellulose and hemicellulose in plant cell walls and play a crucial role in plant growth and development. However, the CesA/Csl gene family has not been reported in pepper. Therefore, the genome-wide research of the CaCesA/CaCsl gene family was conducted in pepper. In this study, a total of 39 CaCesA/CaCsls genes (10 CesAs genes and 29 Csls genes) were identified in pepper and unevenly distributed on 11 chromosomes. These CaCesA/Csls were divided into seven subfamilies (CesAs, CslAs, CslBs, CslCs, CslDs, CslEs, CslGs), and most of CaCesA/Csls genes are closely related to AtCesA/Csls genes. The cis-acting elements in the promoters of CaCesA/Csls genes are mainly related to hormone response and stress response. There are ten collinear gene pairs between the CesA/Csls gene family of pepper and Arabidopsis, and four fragment duplication gene pairs of the CaCesA/Csls genes were discovered. RNA-seq analysis shows that the majority of CaCesA/Csls are expressed in a variety of plant tissues, indicating that most CaCesA/Csls gene expression patterns are not organ-specific, and CaCslD1/D4 have the highest expression in anthers, followed by petal, ovary, and F9. RNA-seq analysis shows that most CaCesA/Csls are responsive to five hormones (IAA, GA3, ABA, SA, and MeJA). The tissue-specific expression analysis of the CaCslD1 gene shows that the CaCslD1 gene is expressed specifically in flowers. In the flower buds IV of cytoplasmic male sterility (CMS) and its restoration of fertility (Rf) system, CaCslD1 reach the highest expression respectively. However, the relative expression level of CaCslD1 in the fertile accessions is extremely significantly higher than in the sterile accessions. This study shows an overall understanding of the CaCesA/Csls gene family and provides a new insight for understanding the function of CaCslD1 in pollen development and exploring the fertility restoration of CMS in pepper.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biologia Computacional , Flores/genética , Flores/metabolismo , Arabidopsis/metabolismo , Fertilidade
7.
Front Psychol ; 13: 877684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959041

RESUMO

Brain lateralization of lexical tone processing remains a matter of debate. In this study we used a dichotic listening paradigm to examine the influences of the knowledge of Jyutping (a romanization writing system which provides explicit Cantonese tone markers), linguistic-processing demand and tone type on the ear preference pattern of native tone processing in Hong Kong Cantonese speakers. While participants with little knowledge of Jyutping showed a previously reported left-ear advantage (LEA), those with a good level of Jyutping expertise exhibited either a right-ear advantage or bilateral processing during lexical tone identification and contour tone discrimination, respectively. As for the effect of linguistic-processing demand, while an LEA was found in acoustic/phonetic perception situations, this advantage disappeared and was replaced by a bilateral pattern in conditions that involved a greater extent of linguistic processing, suggesting an increased involvement of the left hemisphere. Regarding the effect of tone type, both groups showed an LEA in level tone discrimination, but only the Jyutping group demonstrated a bilateral pattern in contour tone discrimination. Overall, knowledge of written codes of tones, greater degree of linguistic processing and contour tone processing seem to influence the brain lateralization of lexical tone processing in native listeners of Cantonese by increasing the recruitment of the left-hemisphere language network.

8.
3 Biotech ; 12(6): 137, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35646505

RESUMO

Fructokinase is the main catalytic enzyme for fructose phosphorylation and can also act as a glucose receptor and signal molecule to regulate the metabolism of plants, which plays an important role in plant growth and development. In this study, the CaFRK gene family and their molecular characteristics are systematically identified and analyzed, and the specific expression of CaFRKs under different tissues, abiotic stresses and hormone treatments were explored. Nine FRK genes were authenticated in pepper genome database, which were dispersedly distributed on eight reference chromosomes and predicted to localize in the cytoplasm. Many cis-acting elements that respond to light, different stresses, hormones and tissue-specific expression were found in the promoters of CaFRKs. FRK proteins of four species including Capsicum annuum, Arabidopsis thaliana, Solanum lycopersicum and Oryza sativa were divided into four groups via phylogenetic analysis. The collinearity analysis showed that there were two collinear gene pairs between CaFRKs and AtFRKs. In addition, it was significantly found that CaFRK9 expressed far higher in flower than other tissues, and the relative expression of CaFRK9 was gradually enhanced with the development of flower buds in fertile accessions, 8B, R1 and F1. Nevertheless, CaFRK9 hardly expressed in all stages of cytoplasmic male sterile lines. Based on the quantitative real-time PCR, most of CaFRK genes showed significant up-regulation under low-temperature, NaCl and PEG6000 treatments. On the contrary, the expression levels of most CaFRKs revealed a various trend in response to hormone treatments (IAA, ABA, GA3, SA and MeJA). This study systematically analyzed CaFRK gene family and studied its expression pattern, which lay the foundation of CaFRK genes cloning and functional verification response to abiotic stresses, and provides new insights into exploring the CaFRK genes on the pollen development in pepper. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03196-1.

9.
J Speech Lang Hear Res ; 65(4): 1331-1348, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377182

RESUMO

PURPOSE: A fundamental feature of human speech is variation, including the manner of phonation, as exemplified in the case of whispered speech. In this study, we employed whispered speech to examine an unresolved issue about congenital amusia, a neurodevelopmental disorder of musical pitch processing, which also affects speech pitch processing such as lexical tone and intonation perception. The controversy concerns whether amusia is a pitch-processing disorder or can affect speech processing beyond pitch. METHOD: We examined lexical tone and intonation recognition in 19 Mandarin-speaking amusics and 19 matched controls in phonated and whispered speech, where fundamental frequency (f o) information is either present or absent. RESULTS: The results revealed that the performance of congenital amusics was inferior to that of controls in lexical tone identification in both phonated and whispered speech. These impairments were also detected in identifying intonation (statements/questions) in phonated and whispered modes. Across the experiments, regression models revealed that f o and non-f o (duration, intensity, and formant frequency) acoustic cues predicted tone and intonation recognition in phonated speech, whereas non-f o cues predicted tone and intonation recognition in whispered speech. There were significant differences between amusics and controls in the use of both f o and non-f o cues. CONCLUSION: The results provided the first evidence that the impairments of amusics in lexical tone and intonation identification prevail into whispered speech and support the hypothesis that the deficits of amusia extend beyond pitch processing. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.19302275.


Assuntos
Transtornos da Percepção Auditiva , Percepção da Fala , Humanos , Percepção da Altura Sonora , Reconhecimento Psicológico , Fala
10.
Protoplasma ; 259(6): 1541-1552, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35296925

RESUMO

Phospholipase C (PLC) is one of the major lipid-hydrolyzing enzymes, involved in lipid-mediating signal pathway. PLCs have been found to play a significant role in the growth and development of plants. In this study, the genome-wide identification and characteristic analysis of CaPLC family genes in pepper were conducted and the expression of two CaPLC genes were investigated. The results showed that a total of 11 CaPLC family genes were systematically identified, which were distributed on five chromosomes and divided into two groups based on their evolutionary relevance. Some cis-elements responding to different hormones and stresses were screened in the promoters of CaPLC genes. Quantitative real-time PCR indicated that the expression of CaPIPLC1 and CaPIPLC5 in flowers were dozens of times higher than in other tissues. In addition, with the development of flower buds, the relative expressions of CaPIPLC1 and CaPIPLC5 gradually increased in fertile materials R1 and F1. However, no expression of CaPIPLC1 and CaPIPLC5 were detected at all developmental stages of cytoplasmic male sterile lines (CMS) compared with fertile accessions. The study revealed the number and characteristics of the CaPLC family genes, which supplied a basic and systematic understanding of CaPLC family. In addition, these findings provided new insights into the role of CaPLC genes in pollen development and fertility restoration in pepper.


Assuntos
Regulação da Expressão Gênica de Plantas , Fosfolipases Tipo C , Fertilidade/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Hormônios , Lipídeos , Fosfolipases Tipo C/genética
11.
Sensors (Basel) ; 21(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804316

RESUMO

Accurate rainfall observation data with high temporal and spatial resolution are essential for national disaster prevention and mitigation as well as climate response decisions. This paper introduces a field experiment using an E-band millimeter-wave link to obtain rainfall rate information in Nanjing city, which is situated in the east of China. The link is 3 km long and operates at 71 and 81 GHz. We first distinguish between the wet and the dry periods, and then determine the classification threshold for calculating attenuation baseline in real time. We correct the influence of the wet antenna attenuation and finally calculate the rainfall rate through the power law relationship between the rainfall rate and the rain-induced attenuation. The experimental results show that the correlation between the rainfall rate retrieved from the 71 GHz link and the rainfall rate measured by the raindrop spectrometer is up to 0.9. The correlation at 81 GHz is up to 0.91. The mean relative errors are all below 5%. By comparing with the rainfall rate measured by the laser raindrop spectrometer set up at the experimental site, we verified the reliability and accuracy of monitoring rainfall using the E-band millimeter-wave link.

12.
3 Biotech ; 11(4): 194, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927985

RESUMO

The growth and development of watermelon and melon are affected by abiotic stresses such as cold, salinity and drought. Plant superoxide dismutase (SOD) proteins exerted great effects on plant growth, development and response to abiotic stresses. However, little is known about the characteristics of watermelon and melon SOD gene families and their expression patterns under abiotic stresses. In this study, the genome-wide identification of SOD genes and their expression patterns under abiotic stresses has been done in watermelon and melon. Seven SODs were identified in watermelon and melon, respectively. Chromosome location indicated that the SODs were dispersedly distributed on 4-6 chromosomes. Almost all the SOD proteins contained 300 amino acids or less and the intron numbers of SODs ranged from 5 to 7. On the basis of phylogenetic analysis, the SODs were classified into six sub-groups which was also verified by similar motif composition, gene structure and sub-cellular location. Gene ontology analysis displayed that many SOD proteins participated in binding, catalytic, antioxidant activity and stimulus-response. Cis-regulatory elements related to stresses and hormones were found in the promoters of the SODs. Based on the quantitative real-time PCR, most of CmSOD and ClSOD genes showed obvious up-regulation under low-temperature, NaCl and PEG6000 treatments. The abiotic stress-responsive SOD genes were identified to improve watermelon and melon tolerance against abiotic stresses. This was a preliminary study to describe the genome-wide analysis of SOD gene family in watermelon and melon, and the results would facilitate further study of gene cloning and functional verification of SOD genes response to abiotic stresses in watermelon and melon. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02726-7.

13.
Membranes (Basel) ; 10(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764326

RESUMO

Membrane distillation technology, as a new membrane-based water treatment technology that combines the membrane technology and evaporation process, has the advantages of using low-grade heat, working at atmospheric pressure with simple configuration, etc. In this study, heat and mass transfer were coupled at the membrane surfaces through the user-defined function program. The effects of feed temperature, feed velocity and permeate velocity on temperature polarization were mainly investigated for a high-concentration NaCl solution. The temperature polarization was increased with the increase of feed temperature and the decrease of feed and permeate velocity. The effects of temperature, inlet velocity and solution concentration on the evaporation efficiency of the membrane module for co- and counter-current operations were investigated in detail. The counter-current operation performed better than co-current operation in most cases, except for the condition where the NaCl concentration was relatively low or the module length was long enough. In addition, the optimal membrane thickness for both PVDF and PTFE was studied. The optimal membrane thickness was found in the range of 10 to 20 µm, which corresponded to the highest permeate flux for the selected materials, pore size distribution, and operation conditions. Membrane material with lower thermal conductivity and larger porosity was prone to get higher permeate flux and had larger optimal membrane thickness. Increasing feed velocity or feed temperature could decrease the optimal membrane thickness.

14.
Hortic Res ; 7: 210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35051251

RESUMO

Cytoplasmic male sterility (CMS) is an important tool for producing F1 hybrids, which can exhibit heterosis. The companion system, restorer-of-fertility (Rf), is poorly understood at the molecular level and would be valuable in producing restorer lines for hybrid seed production. The identity of the Rf gene in Capsicum (pepper) is currently unclear. In this study, using bulked segregant RNA sequencing (BSR-seq), a strong candidate Rf gene, Capana06g002866, which is annotated as a NEDD8 conjugating enzyme E2, was identified. Capana06g002866 has an ORF of 555 bp in length encoding 184 amino acids; it can be cloned from F1 plants from the hybridization of the CMS line 8A and restorer line R1 but is not found in CMS line 8A. With qRT-PCR validation, Capana06g002866 was found to be upregulated in restorer accessions compared to sterile accessions. The relative expression in flower buds increased with the developmental stage in F1 plants, while the expression was very low in all flower bud stages of the CMS lines. These results provide new insights into the Rf gene in pepper and will be useful for other crops utilizing the CMS system.

15.
BMC Genomics ; 20(1): 837, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711411

RESUMO

BACKGROUND: Cytoplasmic male sterility (CMS) and its restoration of fertility (Rf) system is an important mechanism to produce F1 hybrid seeds. Understanding the interaction that controls restoration at a molecular level will benefit plant breeders. The CMS is caused by the interaction between mitochondrial and nuclear genes, with the CMS phenotype failing to produce functional anthers, pollen, or male gametes. Thus, understanding the complex processes of anther and pollen development is a prerequisite for understanding the CMS system. Currently it is accepted that the Rf gene in the nucleus restores the fertility of CMS, however the Rf gene has not been cloned. In this study, CMS line 8A and the Rf line R1, as well as a sterile pool (SP) of accessions and a restorer pool (RP) of accessions analyzed the differentially expressed genes (DEGs) between CMS and its fertility restorer using the conjunction of RNA sequencing and bulk segregation analysis. RESULTS: A total of 2274 genes were up-regulated in R1 as compared to 8A, and 1490 genes were up-regulated in RP as compared to SP. There were 891 genes up-regulated in both restorer accessions, R1 and RP, as compared to both sterile accessions, 8A and SP. Through annotation and expression analysis of co-up-regulated expressed genes, eight genes related to fertility restoration were selected. These genes encode putative fructokinase, phosphatidylinositol 4-phosphate 5-kinase, pectate lyase, exopolygalacturonase, pectinesterase, cellulose synthase, fasciclin-like arabinogalactan protein and phosphoinositide phospholipase C. In addition, a phosphatidylinositol signaling system and an inositol phosphate metabolism related to the fertility restorer of CMS were ranked as the most likely pathway for affecting the restoration of fertility in pepper. CONCLUSIONS: Our study revealed that eight genes were related to the restoration of fertility, which provides new insight into understanding the molecular mechanism of fertility restoration of CMS in Capsicum.


Assuntos
Capsicum/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Fertilidade/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Redes e Vias Metabólicas/genética , Infertilidade das Plantas , Análise de Sequência de RNA , Transcriptoma
16.
Sensors (Basel) ; 18(1)2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29278404

RESUMO

In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin - 1 ( x ) ≈ x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector.

17.
Int J Mol Sci ; 16(12): 28683-704, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26633387

RESUMO

Previous studies have showed that the VQ motif-containing proteins in Arabidopsis thaliana and Oryza sativa play an important role in plant growth, development, and stress responses. However, little is known about the functions of the VQ genes in Brassica rapa (Chinese cabbage). In this study, we performed genome-wide identification, characterization, and expression analysis of the VQ genes in Chinese cabbage, especially under adverse environment. We identified 57 VQ genes and classified them into seven subgroups (I-VII), which were dispersedly distributed on chromosomes 1 to 10. The expansion of these genes mainly contributed to segmental and tandem duplication. Fifty-four VQ genes contained no introns and 50 VQ proteins were less than 300 amino acids in length. Quantitative real-time PCR showed that the VQ genes were differentially expressed in various tissues and during different abiotic stresses and plant hormone treatments. This study provides a comprehensive overview of Chinese cabbage VQ genes and will benefit the molecular breeding for resistance to stresses and disease, as well as further studies on the biological functions of the VQ proteins.


Assuntos
Motivos de Aminoácidos , Brassica/genética , Genoma de Planta , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sequência de Aminoácidos , Brassica/classificação , Brassica/metabolismo , Mapeamento Cromossômico , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estruturas Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Filogenia , Matrizes de Pontuação de Posição Específica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Estresse Fisiológico/genética , Transcriptoma
18.
PLoS One ; 9(12): e115773, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541941

RESUMO

Recently, great concerns have been raised regarding the issue of medical image protection due to the increasing demand for telemedicine services, especially the teleradiology service. To meet this challenge, a novel chaos-based approach is suggested in this paper. To address the security and efficiency problems encountered by many existing permutation-diffusion type image ciphers, the new scheme utilizes a single 3D chaotic system, Chen's chaotic system, for both permutation and diffusion. In the permutation stage, we introduce a novel shuffling mechanism, which shuffles each pixel in the plain image by swapping it with another pixel chosen by two of the three state variables of Chen's chaotic system. The remaining variable is used for quantification of pseudorandom keystream for diffusion. Moreover, the selection of state variables is controlled by plain pixel, which enhances the security against known/chosen-plaintext attack. Thorough experimental tests are carried out and the results indicate that the proposed scheme provides an effective and efficient way for real-time secure medical image transmission over public networks.


Assuntos
Segurança Computacional , Diagnóstico por Imagem , Dinâmica não Linear , Algoritmos , Telemedicina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA