Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Virology ; 597: 110145, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38941747

RESUMO

African swine fever virus (ASFV), which was first identified in northern China in 2018, causes high mortality in pigs. Since the I73R protein in ASFV is abundantly expressed during the early phase of virus replication, it can be used as a target protein for early diagnosis. In this study, the I73R protein of ASFV was expressed, and we successfully prepared a novel monoclonal antibody (mAb), 8G11D7, that recognizes this protein. Through both indirect immunofluorescence and Western blotting assays, we demonstrated that 8G11D7 can detect ASFV strains. By evaluating the binding of the antibody to a series of I73R-truncated peptides, the definitive epitope recognized by the monoclonal antibody 8G11D7 was determined to be 58 DKTNTIYPP 66. Bioinformatic analysis revealed that the antigenic epitope had a high antigenic index and conservatism. This study contributes to a deeper understanding of ASFV protein structure and function, helping establish ASFV-specific detection method.

2.
Int J Biol Macromol ; 274(Pt 2): 133401, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925184

RESUMO

Porcine epidemic diarrhea virus (PEDV) is one of the most devastating diseases affecting the pig industry globally. Due to the emergence of novel strains, no effective vaccines are available for prevention and control. Investigating the pathogenic mechanisms of PEDV may provide insights for creating clinical interventions. This study constructed and expressed eukaryotic expression vectors containing PEDV proteins (except NSP11) with a 3' HA tag in Vero cells. The subcellular localization of PEDV proteins was examined using endogenous protein antibodies to investigate their involvement in the viral life cycle, including endocytosis, intracellular trafficking, genome replication, energy metabolism, budding, and release. We systematically analyzed the potential roles of all PEDV viral proteins in the virus life cycle. We found that the endosome sorting complex required for transport (ESCRT) machinery may be involved in the replication and budding processes of PEDV. Our study provides insight into the molecular mechanisms underlying PEDV infection. IMPORTANCE: The global swine industry has suffered immense losses due to the spread of PEDV. Currently, there are no effective vaccines available for clinical protection. Exploring the pathogenic mechanisms of PEDV may provide valuable insights for clinical interventions. This study investigated the involvement of viral proteins in various stages of the PEDV lifecycle in the state of viral infection and identified several previously unreported interactions between viral and host proteins. These findings contribute to a better understanding of the pathogenic mechanisms underlying PEDV infection and may serve as a basis for further research and development of therapeutic strategies.

3.
J Biol Chem ; : 107472, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879005

RESUMO

African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activation of transcription (JAK-STAT) signal transduction. However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using co-immunoprecipitation, confocal microscopy and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to wild-type ASFV. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.

4.
Viruses ; 16(5)2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793594

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the pig industry. Marc-145 cells are widely used for PRRSV isolation, vaccine production, and investigations into virus biological characteristics. Despite their significance in PRRSV research, Marc-145 cells struggle to isolate specific strains of the North American virus genotype (PRRSV-2). The involvement of viral GP2a, GP2b, and GP3 in this phenomenon has been noted. However, the vital amino acids have not yet been identified. In this study, we increased the number of blind passages and successfully isolated two strains that were previously difficult to isolate with Marc-145 cells. Both strains carried an amino acid substitution in GP2a, specifically phenylalanine to leucine at the 98th amino acid position. Through a phylogenetic and epidemiologic analysis of 32 strains, those that were not amenable to isolation widely exhibited this mutation. Then, by using the PRRSV reverse genetics system, IFA, and Western blotting, we identified the mutation that could affect the tropism of PRRSV-2 for Marc-145 cells. Furthermore, an animal experiment was conducted. Through comparisons of clinical signs, mortality rates, and viral load in the organs and sera, we found that mutation did not affect the pathogenicity of PRRSV-2. In conclusion, our study firmly establishes the 98th amino acid in GP2a as a key determinant of PRRSV-2 tropism for Marc-145 cells.


Assuntos
Substituição de Aminoácidos , Filogenia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Suínos , Linhagem Celular , Síndrome Respiratória e Reprodutiva Suína/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Tropismo Viral , Mutação , Genótipo , Aminoácidos/metabolismo
5.
Front Biosci (Landmark Ed) ; 29(5): 189, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38812317

RESUMO

BACKGROUND: It has been demonstrated that exosomes derived from HPV-16 E7-over-expressiong non-small cell lung cancer (NSCLC) cells (E7 Exo) trigger increased levels of epidermal growth factor receptor (EGFR) and miR-381-3p. The purpose of this investigation was to examine the role of E7 Exo in NSCLC angiogenesis, and to analyze the contribution of exosomal EGFR and miR-381-3p to it. METHODS: The influence of E7 Exo on the proliferation and migration of human umbilical vein endothelial cells (HUVECs) was assessed using colony formation and transwell migration assays. Experiments on both cells and animal models were conducted to evaluate the angiogenic effect of E7 Exo treatment. The involvement of exosomal EGFR and miR-381-3p in NSCLC angiogenesis was further investigated through suppressing exosome release or EGFR activation, or by over-expressing miR-381-3p. RESULTS: Treatment with E7 Exo increased the proliferation, migration, and tube formation capacities of HUVECs, as well as angiogenesis in animal models. The suppression of exosome release or EGFR activation in NSCLC cells decreased the E7-induced enhancements in HUVEC migration and tube formation, and notably reduced vascular endothelial growth factor A (VEGFA) and Ang-1 levels. HUVECs that combined miR-381-3p mimic transfection and E7 Exo treatment exhibited a more significant tube-forming capacity than E7 Exo-treated HUVECs alone, but were reversed by the miR-381-3p inhibitor. CONCLUSION: The angiogenesis induced by HPV-16 E7 in NSCLC is mediated through exosomal EGFR and miR-381-3p.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Receptores ErbB , Exossomos , Células Endoteliais da Veia Umbilical Humana , Neoplasias Pulmonares , MicroRNAs , Neovascularização Patológica , Proteínas E7 de Papillomavirus , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Exossomos/metabolismo , Exossomos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/irrigação sanguínea , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Papillomavirus Humano 16/genética , Angiogênese
6.
PLoS One ; 19(5): e0301903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722884

RESUMO

INTRODUCTION: Hematology is an essential field for investigating the prognostic outcomes of cardiovascular diseases (CVDs). Recent research has suggested that mean corpuscular hemoglobin concentration (MCHC) is associated with a poor prognosis in several CVDs. There is no evidence of a correlation between MCHC and hypertension. Therefore, our study aimed to analyze the association of MCHC with all-cause and cardiovascular mortality in hypertensive patients. METHODS: We used cohort data from U.S. adults who participated in the National Health and Nutrition Examination Survey from 1999-2014. COX regression was applied to analyze the relationship between MCHC and all-cause and cardiovascular mortality. In addition, three models were adjusted to reduce confounding factors. We reanalyzed the data after propensity score matching (PSM) to inspect the stability of the results. Stratified analysis was additionally adopted to investigate the results of each subgroup. RESULTS: Our research included 15,154 individuals. During a mean follow-up period of 129 months, 30.6% of the hypertensive population succumbed to mortality. Based on previous studies, we categorized patients with MCHC ≤33mg/dl as the hypochromia group and those with >33mg/dl as the non-hypochromia group. After PSM, the hypochromia group had higher all-cause mortality (adjusted hazard ratio [HR]:1.26, 95% confidence interval [95%CI]:1.11-1.43) and cardiovascular mortality (adjusted HR:1.42, 95%CI:1.12-1.80) than the non-hypochromia group. The results of the COX regression remain stable after matching. Stratified analyses before PSM revealed an interaction of anemia in the relationship between MCHC and mortality, whereas there was no significant interaction after matching. CONCLUSION: In hypertensive individuals, low MCHC was correlated with a poor prognosis. Further studies on MCHC are necessary to analyze the potential mechanisms of its poor prognosis in hypertensive populations.


Assuntos
Índices de Eritrócitos , Hemoglobinas , Hipertensão , Humanos , Hipertensão/sangue , Hipertensão/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Estudos de Coortes , Adulto , Hemoglobinas/análise , Hemoglobinas/metabolismo , Idoso , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/sangue , Prognóstico , Inquéritos Nutricionais , Modelos de Riscos Proporcionais
7.
Front Cardiovasc Med ; 11: 1371606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572310

RESUMO

Background: It is recognized that patients' blood glucose fluctuates over time during acute disease episodes, especially during the outbreak of cardiovascular events, regardless of the presence of an abnormal blood glucose profile prior to admission to the hospital. Glucose fluctuations in patients with acute myocardial infarction (AMI) in the intensive care unit (ICU) are currently not adequately monitored and studied. We focused on blood glucose fluctuation values within 24 h of admission to assess their association with 30-day and 1-year mortality. Methods: Data of patients with AMI aged 18 years or older from the Critical Care Medical Information Marketplace database III V1.4 were available for analysis in this research. Glucose data were obtained by measurement. A total of 390 of them were treated with PCI. The principal consequence was 30-day and 1-year mortality in patients with AMI. The effect of different glucose fluctuations within 24 h of admission on mortality was predicted by constructing a multivariate Cox regression model with four model adjustments and Kaplan-Meier survival curves. Additionally, we performed curve-fitting analyses to show the correlation between blood glucose fluctuations and risk of death. Results: We selected 1,699 AMI patients into our study through screening. The included population was categorized into three groups based on the tertiles of blood glucose fluctuation values within 24 h of admission to the ICU. The three groups were <25 mg/dl, 25-88 mg/dl and >88 mg/dl. By cox regression analysis, the group with the highest blood glucose fluctuation values (>88 mg/dl) had the most significant increase in 30-day and 1-year mortality after excluding confounding factors (30-day mortality adjusted HR = 2.11; 95% CI = 1.49-2.98 p < 0.001; 1-year mortality adjusted HR = 1.83; 95% CI = 1.40-2.39 p < 0.001). As demonstrated by the Kaplan-Meier survival curves, the group with the greatest fluctuations in blood glucose has the worst 30-day and 1-year prognosis. Conclusions: The extent of glucose fluctuations in patients with AMI in the first 24 h after ICU admission is an essential predictor as to 30-day as well as 1-year mortality. When blood glucose fluctuates more than 88 mg/dl within 24 h, mortality increases significantly with the range of blood glucose fluctuations.

8.
Front Microbiol ; 15: 1370417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481793

RESUMO

Introduction: African swine fever virus (ASFV) is a highly contagious virus that spreads rapidly and has a mortality rate of up to 100% in domestic pigs, leading to significant economic losses in the pig industry. The major capsid protein p72 of ASFV plays a critical role in viral invasion and immune evasion. Methods: In this study, we used yeast two-hybrid screening to identify host proteins interacting with p72 in porcine alveolar macrophages (PAMs) and verified these proteins using confocal microscopy and immunoprecipitation techniques. Results and Discussion: We validated 13 proteins that interact with p72, including CD63, B2M, YTHDF2, FTH1, SHFL, CDK5RAP3, VIM, PELO, TIMP2, PHYH, C1QC, CMAS, and ERCC1. Enrichment analysis and protein-protein interaction network analysis of these interacting proteins revealed their involvement in virus attachment, invasion, replication, assembly, and immune regulation. These findings provide new insights into the function of p72 and valuable information for future research on the interaction between ASFV and host proteins.

9.
PLoS Pathog ; 20(3): e1012103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489378

RESUMO

Alphacoronaviruses are the primary coronaviruses responsible for causing severe economic losses in the pig industry with the potential to cause human outbreaks. Currently, extensive studies have reported the essential role of endosomal sorting and transport complexes (ESCRT) in the life cycle of enveloped viruses. However, very little information is available about which ESCRT components are crucial for alphacoronaviruses infection. By using RNA interference in combination with Co-immunoprecipitation, as well as fluorescence and electron microscopy approaches, we have dissected the role of ALIX and TSG101 for two porcine alphacoronavirus cellular entry and replication. Results show that infection by two porcine alphacoronaviruses, including porcine epidemic diarrhea virus (PEDV) and porcine enteric alphacoronavirus (PEAV), is dramatically decreased in ALIX- or TSG101-depleted cells. Furthermore, PEDV entry significantly increases the interaction of ALIX with caveolin-1 (CAV1) and RAB7, which are crucial for viral endocytosis and lysosomal transport, however, does not require TSG101. Interestingly, PEAV not only relies on ALIX to regulate viral endocytosis and lysosomal transport, but also requires TSG101 to regulate macropinocytosis. Besides, ALIX and TSG101 are recruited to the replication sites of PEDV and PEAV where they become localized within the endoplasmic reticulum and virus-induced double-membrane vesicles. PEDV and PEAV replication were significantly inhibited by depletion of ALIX and TSG101 in Vero cells or primary jejunal epithelial cells, indicating that ALIX and TSG101 are crucial for PEDV and PEAV replication. Collectively, these data highlight the dual role of ALIX and TSG101 in the entry and replication of two porcine alphacoronaviruses. Thus, ESCRT proteins could serve as therapeutic targets against two porcine alphacoronaviruses infection.


Assuntos
Alphacoronavirus , Proteínas de Ligação ao Cálcio , Vírus da Diarreia Epidêmica Suína , Animais , Alphacoronavirus/metabolismo , Linhagem Celular , Chlorocebus aethiops , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Epiteliais/metabolismo , Vírus da Diarreia Epidêmica Suína/metabolismo , Suínos , Células Vero , Replicação Viral , Proteínas de Ligação ao Cálcio/metabolismo
10.
Int J Biol Macromol ; 266(Pt 1): 130939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493816

RESUMO

African swine fever (ASF) is an acute, febrile, highly contagious infection of pigs caused by the African swine fever virus (ASFV). The purpose of this study is to understand the molecular mechanism of ASFV infection and evaluate the effect of DCA on MAPK pathway, so as to provide scientific basis for the development of new antiviral drugs. The transcriptome analysis found that ASFV infection up-regulated the IL-17 and MAPK signaling pathways to facilitate viral replication. Metabolome analysis showed that DCA levels were up-regulated after ASFV infection, and that exogenous DCA could inhibit activation of the MAPK pathway by ASFV infection and thus inhibit viral replication. Dual-luciferase reporter assays were used to screen the genes of ASFV and revealed that I73R could significantly up-regulate the transcription level of AP-1 transcription factor in the MAPK pathway. Confocal microscopy demonstrated that I73R could promote AP-1 entry into the nucleus, and that DCA could inhibit the I73R-mediated nuclear entry of AP-1, inhibiting MAPK pathway, and I73R interacts with AP-1. These results indicated that DCA can inhibit ASFV-mediated activation of the MAPK pathway, thus inhibiting ASFV replication. This study provides a theoretical basis for research on ASF pathogenesis and for antiviral drug development.


Assuntos
Vírus da Febre Suína Africana , Ácido Desoxicólico , Sistema de Sinalização das MAP Quinases , Replicação Viral , Replicação Viral/efeitos dos fármacos , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Suínos , Ácido Desoxicólico/farmacologia , Fator de Transcrição AP-1/metabolismo , Chlorocebus aethiops , Células Vero , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Antivirais/farmacologia
11.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543614

RESUMO

African swine fever virus (ASFV) and porcine reproductive and respiratory syndrome virus (PRRSV) infections lead to severe respiratory diseases in pigs, resulting in significant economic losses for the global swine industry. While numerous studies have focused on specific gene functions or pathway activities during infection, an investigation of shared immune responses in porcine alveolar macrophages (PAMs) after ASFV and PRRSV infections was lacking. In this study, we conducted a comparison using two single-cell transcriptomic datasets generated from PAMs under ASFV and PRRSV infection. Pattern recognition receptors (PRRs) RIG-I (DDX58), MDA5 (IFIH1), and LGP2 (DHX58) were identified as particularly recognizing ASFV and PRRSV, triggering cellular defense responses, including the upregulation of four cytokine families (CCL, CXCL, IL, and TNF) and the induction of pyroptosis. Through weighted gene co-expression network analysis and protein-protein interaction analysis, we identified thirteen gene and protein interactions shared by both scRNA-seq analyses, suggesting the ability to inhibit both ASFV and PRRSV viral replication. We discovered six proteins (PARP12, PARP14, HERC5, DDX60, RSAD2, and MNDA) in PAMs as inhibitors of ASFV and PRRSV replication. Collectively, our findings showed detailed characterizations of the immune responses in PAMs during ASFV and PRRSV infections, which may facilitate the treatments of these viral diseases.

12.
Virology ; 594: 110062, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38522136

RESUMO

Viral diarrhea is the predominant digestive tract sickness in piglings, resulting in substantial profit losses in the porcine industry. Porcine rotavirus A (PoRVA) and porcine epidemic diarrhea virus (PEDV) are the main causes of grave gastroenteritis and massive dysentery, especially in piglets. PoRVA and PEDV have high transmissibility, exhibit similar clinical symptoms, and frequently co-occur. Therefore, to avoid financial losses, a quick, highly efficient, objective diagnostic test for the prevention and detection of these diseases is required. Enzymatic recombinase amplification (ERA) is a novel technology based on isothermal nucleic acid amplification. It demonstrates high sensitivity and excellent specificity, with a short processing time and easy operability, compared with other in vitro nucleic acid amplification technologies. In this study, a dual ERA method to detect and distinguish between PEDV and PoRVA nucleic acids was established. The method shows high sensitivity, as the detection limits were 101 copies/µL for both viruses. To test the usefulness of this method in clinical settings, we tested 64 swine clinical samples. Our results were 100% matched with those acquired using a commercially available kit. Therefore, we have successfully developed a dual diagnostic ERA nucleic acids method for detecting and distinguishing between PEDV and PoRVA.


Assuntos
Infecções por Coronavirus , Ácidos Nucleicos , Vírus da Diarreia Epidêmica Suína , Rotavirus , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Recombinases/genética , Doenças dos Suínos/diagnóstico , Sensibilidade e Especificidade , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Diarreia/diagnóstico , Diarreia/veterinária
13.
J Cancer ; 15(5): 1234-1254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356712

RESUMO

Background: T cells are crucial components of antitumor immunity. A list of genes associated with T cell proliferation was recently identified; however, the impact of T cell proliferation-related genes (TRGs) on the prognosis and therapeutic responses of patients with colorectal cancer (CRC) remains unclear. Methods: 33 TRG expression information and clinical information of patients with CRC gathered from multiple datasets were subjected to bioinformatic analysis. Consensus clustering was used to determine the molecular subtypes associated with T cell proliferation. Utilizing the Lasso-Cox regression, a predictive signature was created and verified in external cohorts. A tumor immune environment analysis was conducted, and potential biomarkers and therapeutic drugs were identified and confirmed via in vitro and in vivo studies. Results: CRC patients were separated into two TRG clusters, and differentially expressed genes (DEGs) were identified. Patient information was divided into three different gene clusters, and the determined molecular subtypes were linked to patient survival, immune cells, and immune functions. Prognosis-associated DEGs in the three gene clusters were used to evaluate the risk score, and a predictive signature was developed. The ability of the risk score to predict patient survival and treatment response has been successfully validated using multiple datasets. To discover more possible biomarkers for CRC, the weighted gene co-expression network analysis algorithm was utilized to screen key TRG variations between groups with high- and low-risk. CDK1, BATF, IL1RN, and ITM2A were screened out as key TRGs, and the expression of key TRGs was confirmed using real-time reverse transcription polymerase chain reaction. According to the key TRGs, 7,8-benzoflavone was identified as the most significant drug molecule, and MTT, colony formation, wound healing, transwell assays, and in vivo experiments indicated that 7,8-benzoflavone significantly suppressed the proliferation and migration of CRC cells. Conclusion: T cell proliferation-based molecular subtypes and predictive signatures can be utilized to anticipate patient results, immunological landscape, and treatment response in CRC. Novel biomarker candidates and potential therapeutic drugs for CRC were identified and verified using in vitro and in vivo tests.

14.
Vet Microbiol ; 290: 109988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244395

RESUMO

African swine fever virus (ASFV) has caused enormous economic losses since its first reported detection, and there is still no effective vaccines or drug treatment. During infection, viruses may employ various strategies, such as regulating the host endoplasmic reticulum stress/unfolded protein response or the formation of stress granules (SGs), to form an optimal environment for virus replication. However, how ASFV infection regulates host endoplasmic reticulum stress, eIF2α-regulated protein synthesis, and the formation of SGs remains unclear. Here, we evaluated the activation of ER stress and its three downstream axes during ASFV infection and identified a powerful dephosphorylation of eIF2α by ASFV ex vivo. This strong dephosphorylation property could maintain the efficiency of eIF2α-mediated de novo global protein synthesis, thus ensuring efficient viral protein synthesis at early stage. In addition, the powerful dephosphorylation of eIF2α by ASFV upon infection could also inhibit the formation of SGs induced by sodium arsenite. In addition, a specific eIF2α dephosphorylation inhibitor, salubrinal, could partially counteract ASFV-mediated eIF2α dephosphorylation and inhibit viral replication. Our results provide new insights into the areas of ASFV`s escape from host immunity and hijacking of the host protein translation system.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Animais , Suínos , Vírus da Febre Suína Africana/genética , Grânulos de Estresse , Replicação Viral , Biossíntese de Proteínas
15.
Vet Microbiol ; 290: 110002, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295489

RESUMO

African swine fever has caused substantial economic losses to China`s pig industry in recent years. Currently, the highly pathogenic African swine fever virus strain of genotype II is predominantly circulating in China, accompanied by a series of emerging isolates displaying unique genetic variations. The pathogenicity of these emerging strains is still unclear. Recently, a novel ASFV strain with a distinguishable three-large-fragment gene deletion was obtained from the field specimens, and its in vivo pathogenicity and transmission were evaluated in this study. The animal experiment involved inoculating a high dose of YNFN202103 and comparing its effects with those of the highly pathogenic strain GZ201801_2. Results showed that pigs infected by YNFN202103 exhibited significantly prolonged onset and survival time, lower viremia levels, and less severe histopathological lesions compared to GZ201801_2. These findings contributed valuable insights into the pathogenicity and transmission of ASFV and its prevention and eradication strategies in practical settings.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência/genética , Deleção de Genes , China , Doenças dos Suínos/genética
16.
Vet Res ; 55(1): 9, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225617

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen with substantial economic implications for the global swine industry. The existing vaccination strategies and antiviral drugs offer limited protection. Replication of the viral RNA genome encompasses a complex series of steps, wherein a replication complex is assembled from various components derived from both viral and cellular sources, as well as from the viral genomic RNA template. In this study, we found that ZNF283, a Krüppel-associated box (KRAB) containing zinc finger protein, was upregulated in PRRSV-infected Marc-145 cells and porcine alveolar macrophages and that ZNF283 inhibited PRRSV replication and RNA synthesis. We also found that ZNF283 interacts with the viral proteins Nsp9, an RNA-dependent RNA polymerase, and Nsp10, a helicase. The main regions involved in the interaction between ZNF283 and Nsp9 were determined to be the KRAB domain of ZNF283 and amino acids 178-449 of Nsp9. The KRAB domain of ZNF283 plays a role in facilitating Nsp10 binding. In addition, ZNF283 may have an affinity for the 3' untranslated region of PRRSV. These findings suggest that ZNF283 is an antiviral factor that inhibits PRRSV infection and extend our understanding of the interactions between KRAB-containing zinc finger proteins and viruses.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , RNA Viral/metabolismo , Dedos de Zinco , Replicação Viral
17.
Comb Chem High Throughput Screen ; 27(1): 101-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37170985

RESUMO

BACKGROUND: Metformin (MET), a worldwide used drug for treating type 2 diabetes but not metabolized by humans, has been found with the largest amount in the aquatic environment. Two MET chlorination byproducts, including Y and C, were transformed into drinking water during chlorination. However, the potential toxicity of the byproducts in hepatotoxicity and reproduction toxicity remains unclear. METHODS: The TOPKAT database predicted the toxicological properties of metformin disinfection by-products. The targets of metformin disinfection by-products were mainly obtained from the PharmMapper database, and then the targets of hepatotoxicity and reproductive toxicity were screened from GeneCards. The overlapping targets of toxic component targets and the hepatotoxicity or reproduction toxicity targets were regarded as the key targets. Then, the STRING database analyzed the key target to construct a protein-protein interaction network (PPI) and GO, and KEGG analysis was performed by the DAVID platform. Meanwhile, the PPI network and compound- target network were constructed by Cytoscape 3.9.1. Finally, Discovery Studio 2019 software was used for molecular docking verification of the two toxic compounds and the core genes. RESULTS: Y and C exhibited hepatotoxicity, carcinogenicity, and mutagenicity evaluated by TOPKAT. There were 22 potential targets relating to compound Y and hepatotoxicity and reproduction toxicity and 14 potential targets relating to compound C and hepatotoxicity and reproduction toxicity. PPI network analysis showed that SRC, MAPK14, F2, PTPN1, IL2, MMP3, HRAS, and RARA might be the key targets; the KEGG analysis indicated that compounds Y and C caused hepatotoxicity through Hepatitis B, Pathways in cancer, Chemical carcinogenesis-reactive oxygen species, Epstein-Barr virus infection; compound Y and C caused reproduction toxicity through GnRH signaling pathway, Endocrine resistance, Prostate cancer, Progesterone-mediated oocyte maturation. Molecular docking results showed that 2 compounds could fit in the binding pocket of the 7 hub genes. CONCLUSION: This study preliminarily revealed the potential toxicity and possible toxicity mechanism of metformin disinfection by-products and provided a new idea for follow-up research.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diabetes Mellitus Tipo 2 , Água Potável , Medicamentos de Ervas Chinesas , Infecções por Vírus Epstein-Barr , Metformina , Humanos , Masculino , Simulação de Acoplamento Molecular , Halogenação , Metformina/toxicidade , Herpesvirus Humano 4
18.
Inorg Chem ; 63(5): 2313-2321, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38112695

RESUMO

The site-selective reaction of substrates with multiple reactive sites has been a focus of the current synthetic chemistry. The use of attractive noncovalent interactions between the catalyst and substrate is emerging as a versatile approach to address site-selectivity challenges. Herein, we designed and synthesized a series of palladacycles, to control meta-selective Suzuki coupling of 3,4-dichlorophenol and 3,4-dichlorobenzyl alcohol. Noncovalent interactions directed zwitterionic aqua palladacycles catalyzed meta-selective Suzuki couplings of 3,4-dichloroarenes bearing hydroxyl in water have been developed. Experiments and density functional theory (DFT) calculations demonstrated that the electrostatic interactions play a critical role in meta-selective coupling of 3,4-dichlorophenol, while meta-selective coupling of 3,4-dichlorobenzyl alcohol arises due to the hydrogen-bonding interactions.

19.
Virology ; 589: 109923, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977082

RESUMO

Porcine epidemic diarrhea (PED) is an acute, severe, highly contagious disease. Porcine epidemic diarrhea virus (PEDV) strains are prone to mutation, and the immune response induced by traditional vaccines may not be strong enough to be effective against the virus. Therefore, there is an urgent need to develop novel anti-PEDV drugs. This study aimed to explore the therapeutic effects of quercetin in PEDV infections in vitro (Vero cells) and in vivo (suckling piglets). Using transmission electron microscopy and laser confocal microscopy, we found that PEDV infection promotes the accumulation of lipid droplets (LDs). In vitro, studies showed that quercetin inhibits LD accumulation by down-regulating NF-κB signaling and IL-1ß, IL-8, and IL-6 levels, thereby inhibiting viral replication. In vivo, studies in pigs demonstrated that quercetin can effectively relieve the clinical symptoms and intestinal injury caused by PEDV. Collectively, our findings suggest that quercetin inhibits PEDV replication both in vivo and in vitro, which provides a new direction for the development of PED antiviral drugs.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Chlorocebus aethiops , Animais , Suínos , Quercetina/farmacologia , Quercetina/uso terapêutico , Células Vero , Vírus da Diarreia Epidêmica Suína/fisiologia , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Diarreia
20.
J Virol ; 97(12): e0011523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038431

RESUMO

IMPORTANCE: Porcine epidemic diarrhea, characterized by vomiting, dehydration, and diarrhea, is an acute and highly contagious enteric disease caused by porcine epidemic diarrhea virus (PEDV) in neonatal piglets. This disease has caused large economic losses to the porcine industry worldwide. Thus, identifying the host factors involved in PEDV infection is important to develop novel strategies to control PEDV transmission. This study shows that PEDV infection upregulates karyopherin α 2 (KPNA2) expression in Vero and intestinal epithelial (IEC) cells. KPNA2 binds to and degrades the PEDV E protein via autophagy to suppress PEDV replication. These results suggest that KPNA2 plays an antiviral role against PEDV. Specifically, knockdown of endogenous KPNA2 enhances PEDV replication, whereas its overexpression inhibits PEDV replication. Our data provide novel KPNA2-mediated viral restriction mechanisms in which KPNA2 suppresses PEDV replication by targeting and degrading the viral E protein through autophagy. These mechanisms can be targeted in future studies to develop novel strategies to control PEDV infection.


Assuntos
Autofagia , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos , Células Vero , Proteínas do Envelope Viral , Proteínas Virais , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA