Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39096407

RESUMO

The prompt and precise identification of hemodynamically significant coronary artery lesions remains an ongoing challenge. This study investigated the diagnostic value of non-invasive global left ventricular myocardial work indices by echocardiography in functional status of coronary artery disease (CAD) patients with myocardial ischemia using fractional flow reserve (FFR) as the gold standard. A total of 77 consecutive patients with clinically suspected CAD were prospectively enrolled. All participants sequentially underwent echocardiography, invasive coronary angiography (ICA) and FFR measurement. According to the results of ICA, patients were divided into myocardial ischemia group (FFR ≤ 0.8, n = 27) and non-myocardial ischemia group (FFR > 0.8, n = 50). Myocardial work indices including global work index (GWI), global constructive work (GCW), global wasted work (GWW), global work efficiency (GWE), global positive work (GPW), global negative work (GNW), global systolic constructive work (GSCW) and global systolic wasted work (GSWW) were obtained by using the non-invasive left ventricular pressure strain loop (PSL) technique. Compared with the non-myocardial ischemia group, GWI, GCW, GPW and GSCW were significantly decreased in the myocardial ischemia group at either the 18-segment level or the 12-segment level (P < 0.001). At the 18-segment level, GWI < 1783.6 mmHg%, GCW < 1945.4 mmHg%, GPW < 1788.7 mmHg% and GSCW < 1916.5 mmHg% were optimal cut-off value to detect myocardial ischemia with an FFR ≤ 0.8. Global left ventricular myocardial work indices by echocardiography exhibited a good diagnostic value in patients with CAD and may have a good clinical significance for the screening of suspected myocardial ischemia.

2.
Environ Geochem Health ; 46(10): 371, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167279

RESUMO

Copper-based nanoparticles (NPs) are gradually being introduced as sustainable agricultural nanopesticides. However, the effects of NPs on plants requires carefully evaluation to ensure their safe utilization. In this study, leaves of 2-week-old lettuce (Lactuca sativa L.) were exposed to copper oxide nanoparticles (CuO-NPs, 0 [CK], 100 [T1], and 1000 [T2] mg/L) for 15 days. A significant Cu accumulation (up to 1966 mg/kg) was detected in lettuce leaves. The metabolomics revealed a total of 474 metabolites in lettuce leaves, and clear differences were observed in the metabolite profiles of control and CuO-NPs treated leaves. Generally, phenolic acids and alkaloids, which are important antioxidants, were significantly increased (1.26-4.53 folds) under foliar exposure to NPs; meanwhile, all the significantly affected flavonoids were down-regulated after CuO-NP exposure, indicating these flavonoids were consumed under oxidative stress. Succinic and citric acids, which are key components of the tricarboxylic acid cycle, were especially increased under T2, suggesting the energy and carbohydrate metabolisms were enhanced under high-concentration CuO-NP treatment. There was also both up- and down-regulation of fatty acids, suggesting cell membrane fluidity and function responded to CuO-NPs. Galactinol, which is related to galactose metabolism, and xanthosine, which is crucial in purine and caffeine metabolism, were down-regulated under T2, indicating decreased stress resistance and disturbed nucleotide metabolism under the high CuO-NP dose. Moreover, the differentially accumulated metabolites were significantly associated with plant growth and its antioxidant ability. Future work should focus on controlling the overuse or excessive release of NPs into agricultural ecosystems to limit their adverse effects.


Assuntos
Antioxidantes , Carbono , Cobre , Lactuca , Folhas de Planta , Lactuca/metabolismo , Lactuca/efeitos dos fármacos , Antioxidantes/metabolismo , Cobre/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Carbono/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Metabolômica
3.
Cancer Med ; 13(13): e7453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38986683

RESUMO

OBJECTIVE: The purpose of the study is to construct meaningful nomogram models according to the independent prognostic factor for metastatic pancreatic cancer receiving chemotherapy. METHODS: This study is retrospective and consecutively included 143 patients from January 2013 to June 2021. The receiver operating characteristic (ROC) curve with the area under the curve (AUC) is utilized to determine the optimal cut-off value. The Kaplan-Meier survival analysis, univariate and multivariable Cox regression analysis are exploited to identify the correlation of inflammatory biomarkers and clinicopathological features with survival. R software are run to construct nomograms based on independent risk factors to visualize survival. Nomogram model is examined using calibration curve and decision curve analysis (DCA). RESULTS: The best cut-off values of 966.71, 0.257, and 2.54 for the systemic immunological inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte ratio (NLR) were obtained by ROC analysis. Cox proportional-hazards model revealed that baseline SII, history of drinking and metastasis sites were independent prognostic indices for survival. We established prognostic nomograms for primary endpoints of this study. The nomograms' predictive potential and clinical efficacy have been evaluated by calibration curves and DCA. CONCLUSION: We constructed nomograms based on independent prognostic factors, these models have promising applications in clinical practice to assist clinicians in personalizing the management of patients.


Assuntos
Inflamação , Nomogramas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Inflamação/imunologia , Idoso , Prognóstico , Neutrófilos/imunologia , Curva ROC , Estimativa de Kaplan-Meier , Linfócitos/imunologia , Monócitos/imunologia , Metástase Neoplásica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Modelos de Riscos Proporcionais
4.
Microorganisms ; 12(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065259

RESUMO

Flower endophytic fungi play a major role in plant reproduction, stress resistance, and growth and development. However, little is known about how artificial cultivation affects the endophytic fungal community found in the tepals of rare horticultural plants. In this research, we used high-throughput sequencing technology combined with bioinformatics analysis to reveal the endophytic fungal community of tepals in Lirianthe delavayi and the effects of artificial cultivation on the community composition and function of these plants, using tepals of L. delavayi from wild habitat, cultivated campus habitat, and cultivated field habitat as research objects. The results showed that the variety of endophytic fungi in the tepals of L. delavayi was abundant, with a total of 907 Amplicon sequencing variants (ASVs) obtained from all the samples, which were further classified into 4 phyla, 23 classes, 51 orders, 97 families, 156 genera, and 214 species. We also found that artificial cultivation had a significant impact on the community composition of endophytic fungi. Although there was no significant difference at the phylum level, with Ascomycota and Basidiomycota being the main phyla, there were significant differences in dominant and unique genera. Artificial cultivation has led to the addition of new pathogenic fungal genera, such as Phaeosphaeria, Botryosphaeria, and Paraconiothyrium, increasing the risk of disease in L. delavayi. In addition, the abundance of the endophytic fungus Rhodotorula, which is typical in plant reproductive organs, decreased. Artificial cultivation also altered the metabolic pathways of endophytic fungi, decreasing their ability to resist pests and diseases and reducing their ability to reproduce. A comparison of endophytic fungi in tepals and leaves revealed significant differences in community composition and changes in the endophytic diversity caused by artificial cultivation. To summarize, our results indicate that endophytic fungi in the tepals of L. delavayi mainly consist of pathogenic and saprophytic fungi. Simultaneously, artificial cultivation introduces a great number of pathogenic fungi that alter the metabolic pathways associated with plant resistance to disease and pests, as well as reproduction, which can increase the risk of plant disease and reduce plant reproductive capacity. Our study provides an important reference for the conservation and breeding of rare horticultural plants.

5.
J Microbiol Biotechnol ; 34(6): 1249-1259, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938004

RESUMO

It remains to be determined whether there is a geographical distribution pattern and phylogenetic signals for the Mycena strains with seed germination of the orchid plant Gastrodia elata. This study analyzed the community composition and phylogenetics of 72 Mycena strains associated with G. elata varieties (G. elata. f. glauca and G. elata. f. viridis) using multiple gene fragments (ITS+nLSU+SSU). We found that (1) these diverse Mycena phylogenetically belong to the Basidiospore amyloid group. (2) There is a phylogenetic signal of Mycena for germination of G. elata. Those strains phylogenetically close to M. abramsii, M. polygramma, and an unclassified Mycena had significantly higher germination rates than those to M. citrinomarginata. (3) The Mycena distribution depends on geographic site and G. elata variety. Both unclassified Mycena group 1 and the M. abramsii group were dominant for the two varieties of G. elata; in contrast, the M. citrinomarginata group was dominant in G. elata f. glauca but absent in G. elata f. viridis. Our results indicate that the community composition of numerous Mycena resources in the Zhaotong area varies by geographical location and G. elata variety. Importantly, our results also indicate that Mycena's phylogenetic status is correlated with its germination rate.


Assuntos
Gastrodia , Germinação , Filogenia , Gastrodia/microbiologia , Gastrodia/genética , DNA Fúngico/genética , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Basidiomycota/genética , Basidiomycota/classificação , Basidiomycota/fisiologia
6.
Elife ; 132024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896455

RESUMO

Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.


Assuntos
Ageratina , Folhas de Planta , Rizosfera , Plântula , Microbiologia do Solo , Ageratina/microbiologia , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Microbiota , Espécies Introduzidas , Germinação
7.
Food Chem ; 445: 138788, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394910

RESUMO

Point-of-care testing (POCT) is promising for biodetection in home healthcare due to advantages of simplicity, rapidity, low cost, portability, high sensitivity and accuracy, and object-oriented POCT platform can be developed by nanozyme-based biosensing. However, designing high-performance nanozymes with targeted regulated catalytic activity remains challenging. Herein, advanced PtRhRuCu quaternary alloy nanozymes (QANs) were rationally designed and successfully synthesized. Cu atoms induced mechanisms of hydrogen peroxide (H2O2) activation and d-band center regulation, achieving high enhancement of peroxide (POD)-like activity and inhibition of oxidase (OXD)-like activity. Inspired by this, a smartphone-assisted colorimetric platform integrated with test strips was established for glucose detection of soft drinks, with a detection limit of 0.021 mM and a recovery rate of 97.87 to 103.36 %. This work not only provides a novel path for tuning specific enzyme-like activities of metal nanozymes, but also shows the potential feasibility for rational design of POCT sensors in actual samples.


Assuntos
Cobre , Glucose , Colorimetria , Peróxido de Hidrogênio , Smartphone , Peroxidases
8.
Ecol Evol ; 14(2): e11004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389997

RESUMO

Full myco-heterotrophic orchid Gastrodia elata Bl. is widely distributed in Northeast Asia, and previous research has not fully investigated the symbiotic fungal community of its early immature tubers. This study utilized Illumina sequencing to compare symbiotic fungal communities in natural G. elata immature tubers and their habitats. LEfSe (Linear Discriminant Analysis Effect Size) was used to screen for Biomarkers that could explain variations among different fungal communities, and correlation analyses were performed among Biomarkers and other common orchid mycorrhizal fungi. Our results illustrate that the symbiotic fungal communities of immature G. elata tubers cannot be simply interpreted as subsets of the environmental fungal communities because some key members cannot be traced back to the environment. The early growth of G. elata was related to a small group of fungi, such as Sebacina, Thelephora, and Inocybe, which were also common mycorrhizal fungi from other orchids. In addition, Mycena, Auricularia, and Cryptococcus were unique fungal partners of G. elata, and many new species have yet to be discovered. Possible symbiotic Mycena should be M. plumipes and its sibling species in this case. Our results provide insight into the symbiotic partner switch and trophic pattern change during the development and maturation of G. elata.

9.
Eur J Pharm Sci ; 193: 106687, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176662

RESUMO

Random flaps are widely used in the treatment of injuries, tumors, congenital malformations, and other diseases. However, postoperative skin flaps are prone to ischemic necrosis, leading to surgical failure. Insulin-like growth factor- 1(IGF-1) belongs to the IGF family and exerts its growth-promoting effects in various tissues through autocrine or paracrine mechanisms. Its application in skin flaps and other traumatic diseases is relatively limited. Poly (lactic-co-glycolic acid) (PLGA) is a degradable high-molecular-weight organic compound commonly used in biomaterials. This study prepared IGF-PLGA sustained-release microspheres to explore their impact on the survival rate of flaps both in vitro and in vivo, as well as the mechanisms involved. The research results demonstrate that IGF-PLGA has a good sustained-release effect. At the cellular level, it can promote 3T3 cell proliferation by inhibiting oxidative stress, inhibit apoptosis, and enhance the tube formation ability of human umbilical vein endothelial cells (HUVEC) . At the animal level, it accelerates flap healing by promoting vascularization through the inhibition of oxidative stress. Furthermore, this study reveals the role of IGF-PLGA in activating the Angiopoietin-1(Ang1)/Tie2 signaling pathway in promoting flap vascularization, providing a strong theoretical basis and therapeutic target for the application of IGF-1 in flaps and other traumatic diseases.


Assuntos
Angiopoietina-1 , Fator de Crescimento Insulin-Like I , Animais , Humanos , Angiogênese , Angiopoietina-1/metabolismo , Preparações de Ação Retardada , Células Endoteliais , Fator de Crescimento Insulin-Like I/farmacologia , Microesferas , Estresse Oxidativo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transdução de Sinais , Receptor TIE-2/efeitos dos fármacos , Receptor TIE-2/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo
10.
Can Urol Assoc J ; 18(3): E73-E79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010229

RESUMO

INTRODUCTION: High-dose chemotherapy with autologous stem-cell transplantation (HDC-ASCT) is standard therapy for metastatic germ cell tumors (mGCTs) in patients whose disease progresses during or after conventional chemotherapy. We conducted a retrospective review of HDC-ASCT in relapsed mGCT patients in the province of Alberta, Canada, over the past two decades. METHODS: Patients with mGCTs who received HDC-ASCT at two provincial cancer referral centers from 2000-2018 were identified from institutional databases. Baseline clinical and treatment characteristics were collected, as well as overall survival (OS ) and disease-free survival (DFS). Relevant prognostic variables were analyzed. RESULTS: Forty-three patients were identified. The median age was 28 years (range 19-56). A majority (95%) had non-seminoma histology and testis/retroperitoneal primary (84%). Twenty patients (47%) had poor-risk disease, as per The International Germ Cell Consensus Classification (IGCCC), at start of first-line chemotherapy. HDC-ASCT was used as second-line therapy in 65% of patients, and 58% of ASCT patients received tandem transplants. Median followup after ASCT was 22 months (range 2-181). At last followup, 42% of patients were alive without disease, including 3/7 (43%) of patients with primary mediastinal disease. Two-year and five-year DFS/OS ratios were 44%/65% and 38%/45%, respectively. Median OS and DFS for all patients were 30.0 months (13.3-46.6) and 8.0 months (0.9-15.1), respectively. CONCLUSIONS: We found that HDC-ASCT is an effective salvage therapy in mGCT, consistent with existing literature. Patients appeared to benefit regardless of primary site. Although limited by small sample size, we found a numerical difference in DFS and OS between second- and third-line HDC-ASCT and single vs. tandem ASCT.

11.
Anal Chem ; 95(50): 18426-18435, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051938

RESUMO

Non-small cell lung cancer (NSCLC) accounts for a high proportion of lung cancer cases globally, but early detection remains challenging, and insufficient oxygen supply at tumor sites leads to suboptimal treatment outcomes. Therefore, the development of core-shell Au@Pt-Se nanoprobes (Au@Pt-Se NPs) with peptide chains linked through Pt-Se bonds was designed and synthesized for NSCLC biomarker protein calcium-activated neutral protease 2 (CAPN2) and photothermal therapy (PTT) enhancement. The NP can be specifically cleaved by CAPN2, resulting in fluorescence recovery to realize the detection. The Pt-Se bonds exhibit excellent resistance to biologically abundant thiols such as glutathione, thus avoiding "false-positive" results and enabling precise detection of NSCLC. Additionally, the platinum (Pt) shell possesses catalase-like properties that catalyze the generation of oxygen from endogenous hydrogen peroxide within the tumor, thereby reducing hypoxia-inducible factor-1α (HIF-1α) levels and alleviating the hypoxic environment at the tumor site. The Au@Pt-Se NPs exhibit strong absorption bands, enabling the possibility of PTT in the near-infrared II region (NIR II). This study presents an effective approach for the early detection of NSCLC while also serving as an oxygen supplier to alleviate the hypoxic environment and enhance NIR II PTT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Carcinoma Pulmonar de Células não Pequenas/terapia , Platina/química , Neoplasias Pulmonares/terapia , Neoplasias/patologia , Oxigênio , Linhagem Celular Tumoral , Nanopartículas/química
12.
Appl Environ Microbiol ; 89(10): e0109323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815356

RESUMO

Climate change, microbial endophytes, and local plants can affect the establishment and expansion of invasive species, yet no study has been performed to assess these interactions. Using a growth chamber, we integrated the belowground (rhizosphere soils) and aboveground (mixture of mature leaf and leaf litter) microbiota into an experimental framework to evaluate the impacts of four native plants acting as microbial inoculation sources on endophyte assembly and growth of the invasive plant Ageratina adenophora in response to drought stress and temperature change. We found that fungal and bacterial enrichment in the leaves and roots of A. adenophora exhibited distinct patterns in response to climatic factors. Many fungi were enriched in roots in response to high temperature and drought stress; in contrast, many bacteria were enriched in leaves in response to low temperature and drought stress. Inoculation of microbiota from phylogenetically close native plant species (i.e., Asteraceae Artemisia atrovirens) causes the recipient plant A. adenophora (Asteraceae) to enrich dominant microbial species from inoculation sources, which commonly results in a lower dissimilar endophytic microbiota and thus produces more negative growth effects when compared to non-Asteraceae inoculations. Drought, microbial inoculation source, and temperature directly impacted the growth of A. adenophora. Both drought and inoculation also indirectly impacted the growth of A. adenophora by changing the root endophytic fungal assembly. Our data indicate that native plant identity can greatly impact the endophyte assembly and host growth of invasive plants, which is regulated by drought and temperature.IMPORTANCEThere has been increasing interest in the interactions between global changes and plant invasions; however, it remains to quantify the role of microbial endophytes in plant invasion with a consideration of their variation in the root vs leaf of hosts, as well as the linkages between microbial inoculations, such as native plant species, and climatic factors, such as temperature and drought. Our study found that local plants acting as microbial inoculants can impact fungal and bacterial enrichment in the leaves and roots of the invasive plant Ageratina adenophora and thus produce distinct growth effects in response to climatic factors; endophyte-mediated invasion of A. adenophora is expected to operate more effectively under favorable moisture. Our study is important for understanding the interactions between climate change, microbial endophytes, and local plant identity in the establishment and expansion of invasive species.


Assuntos
Ageratina , Asteraceae , Endófitos/fisiologia , Plantas/microbiologia , Ageratina/fisiologia , Espécies Introduzidas , Bactérias , Raízes de Plantas/microbiologia , Microbiologia do Solo
13.
PLoS One ; 18(8): e0288229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535639

RESUMO

Based on the concept of bionics and the connotation of city financial ecology, this study constructs a 3-level and 27-indicator evaluation index system, including financial ecology growth, soil, and air. This study uses the entropy-TOPSIS model to weigh indicators objectively and evaluate the financial ecology of 343 China's prefecture-level cities during 2009-2016. This study uses the DEA-Tobit method to assess the financing efficiency of 4013 China's strategic emerging listed firms during 2010-2017 and runs random-effect Tobit panel regressions. Regression results suggest that a city's financial ecology overall has a positive effect on strategic emerging firms' financing efficiency. Therefore, the government should: improve the multi-tiered financial market system and encourage financial innovation; transform the economic growth model and optimize the industrial structure; establish an information-sharing mechanism and construct a social credit system.


Assuntos
Biônica , Ecologia , Cidades , Desenvolvimento Econômico , China , Eficiência
14.
J Microbiol Biotechnol ; 33(9): 1119-1129, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311706

RESUMO

Seeds are colonized by diverse microorganisms that can improve the growth and stress resistance of host plants. Although understanding the mechanisms of plant endophyte-host plant interactions is increasing, much of this knowledge does not come from seed endophytes, particularly under environmental stress that the plant host grows to face, including biotic (e.g., pathogens, herbivores and insects) and abiotic factors (e.g., drought, heavy metals and salt). In this article, we first provided a framework for the assembly and function of seed endophytes and discussed the sources and assembly process of seed endophytes. Following that, we reviewed the impact of environmental factors on the assembly of seed endophytes. Lastly, we explored recent advances in the growth promotion and stress resistance enhancement of plants, functioning by seed endophytes under various biotic and abiotic stressors.


Assuntos
Endófitos , Metais Pesados , Endófitos/fisiologia , Sementes , Plantas , Metais Pesados/toxicidade , Estresse Fisiológico
15.
Microb Ecol ; 86(3): 2192-2201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37166500

RESUMO

To understand the disease-mediated invasion of exotic plants and the potential risk of disease transmission in local ecosystems, it is necessary to characterize population genetic structure and spatio-temporal dynamics of fungal community associated with both invasive and co-occurring plants. In this study, multiple genes were used to characterize the genetic diversity of 165 strains of Colletotrichum gloeosporioides species complex (CGSC) isolated from healthy leaves and symptomatic leaves of invasive plant Ageratina adenophora, as well as symptomatic leaves of its neighbor plants from eleven geographic sites in China. The data showed that these CGSC strains had a high genetic diversity in each geographic site (all Hd > 0.67 and Pi > 0.01). Haplotype diversity and nucleotide diversity varied greatly in individual gene locus: gs had the highest haplotype diversity (Hd = 0.8972), gapdh had the highest nucleotide diversity (Pi = 0.0705), and ITS had the lowest nucleotide diversity (Pi = 0.0074). Haplotypes were not clustered by geographic site, invasive age, or isolation source. AMOVA revealed that the genetic variation was mainly from within-populations, regardless of geographic or isolation origin. Both AMOVA and neutrality tests indicated these CGSC strains occurred gene exchange among geographic populations but did not experience population expansion along with A. adenophora invasion progress. Our data indicated that A. adenophora primarily accumulated these CGSC fungi in the introduced range, suggesting a high frequency of CGSC transmission between A. adenophora and co-occurring neighbor plants. This study is valuable for understanding the disease-mediated plant invasion and the potential risk of disease transmission driven by exotic plants in local ecosystems.


Assuntos
Ageratina , Colletotrichum , Ageratina/genética , Ageratina/microbiologia , Espécies Introduzidas , Ecossistema , Colletotrichum/genética
16.
Microorganisms ; 11(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985348

RESUMO

Many wild ornamental plant species have been introduced to improve the landscape of cities; however, until now, no study has been performed to explore the composition and function of foliar endophytes associated with cultivated rare plants in cities after their introduction. In this study, we collected the leaves of the healthy ornamental plant Lirianthe delavayi from wild and artificially cultivated habitats in Yunnan and compared their diversity, species composition, and functional predictions of their foliar endophytic fungal community based on high-throughput sequencing technology. In total, 3125 ASVs of fungi were obtained. The alpha diversity indices of wild L. delavayi populations are similar to those of cultivated samples; however, the species compositions of endophytic fungal ASVs were significantly varied in the two habitats. The dominant phylum is Ascomycota, accounting for more than 90% of foliar endophytes in both populations; relatively, artificial cultivation trends to increase the frequency of common phytopathogens of L. delavayi, such as Alternaria, Erysiphe. The relative abundance of 55 functional predictions is different between wild and cultivated L. delavayi leaves (p < 0.05); in particular, chromosome, purine metabolism, and peptidases are significantly increased in wild samples, while flagellar assembly, bacterial chemotaxis, and fatty acid metabolism are significantly enhanced in cultivated samples. Our results indicated that artificial cultivation can greatly change the foliar endophytic fungal community of L. delavayi, which is valuable for understanding the influence of the domestication process on the foliar fungal community associated with rare ornamental plants in urban environments.

17.
Curr Microbiol ; 80(4): 129, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884095

RESUMO

During an investigation of the fungal pathogens associated with the invasive weed Ageratina adenophora from China, some interesting isolates were obtained from healthy leaf, leaf spot, and roots of this weed. Among them, a novel genus Mesophoma, containing two novel species M. speciosa and M. ageratinae, was found. Phylogenetic analysis of the combined, the internal transcribed spacer (ITS), large nuclear subunit ribosomal DNA (LSU), the RNA polymerase II second largest subunit (rpb2), and the partial ß-tubulin (tub2) sequences, showed that M. speciosa and M. ageratinae formed a distinct clade far from all genera previously described in the family Didymellaceae. Combined distinctive morphological characters, including smaller and aseptate conidia when comparing with nearby genera Stagonosporopsis, Boeremia, and Heterphoma, allowed us to describe them as novel species belonging to a novel genus Mesophoma. The full descriptions, illustrations, and a phylogenetic tree showing the position of both M. speciosa and M. ageratinae are provided in this paper. Moreover, the potential for two strains belonging to these two species to be developed into a biocontrol for the spread of the invasive weed Ag. adenophora is also discussed.


Assuntos
Ascomicetos , Filogenia , DNA Fúngico/genética , DNA Ribossômico/genética , Ascomicetos/genética , China
19.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080331

RESUMO

Endophytes and their elicitors can all be utilized in regulating crop biochemical qualities. However, living endophytes and their derived elicitors are always applied separately; little is known about the similarities and differences of their effects. To increase the efficiency of this system when applied in practice, the present work profiled simultaneously the metabolomes in grape cells exposed to endophytic fungi (EF) and their corresponding fungal extracts (CFE). As expected, grape cells exposed separately to different fungi, or to different fungi derived extracts, each exhibited different modifications of metabolite patterns. The metabolic profiles of certain EF- and CFE-exposed grape cells were also differently influenced to certain degrees, owing to the presence of differentially responding metabolites (DRMs). However, the detected majority proportions of coordinately responding metabolites (CRMs) in both the EF- and the CFE-exposed grape cells, as well as the significantly influenced metabolites (SIMs) which are specific to certain fungal strains, clearly indicate coordinative changes in metabolites in grape cells exposed to EF and CFEs. The coordinative changes in metabolites in EF- and CFE-treated grape cells appeared to be fungal strain-dependent. Notably, several of those fungal strain-specific CRMs and DRMs are metabolites and belong to amino acids, lipids, organic acids, phenolic acids, flavonoids, and others, which are major contributors to the biochemistry and sensory qualities of grapes and wines. This research clarifies the detailed responses of metabolites in grape cells exposed to EF and CFEs. It also demonstrates how endophytes can be selectively used in the form of extracts to produce functions as CRMs of the living fungus with increased eco-safety, or separately applied to the living microbes or elicitors to emphasize those effects related to their specifically initiated SIMs and DRMs.


Assuntos
Vitis , Vinho , Endófitos/metabolismo , Fungos/metabolismo , Metaboloma , Vitis/metabolismo
20.
Front Microbiol ; 13: 857796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558123

RESUMO

To determine whether disease-mediated invasion of exotic plants can occur and whether this increases the risk of disease transmission in local ecosystems, it is necessary to characterize the species composition and host range of pathogens accumulated in invasive plants. In this study, we found that Didymellaceae, a family containing economically important plant fungal pathogens, is commonly associated with the invasive plant Ageratina adenophora. Accordingly, we characterized its phylogenetic position through multi-locus phylogenetic analysis, as well as its environmental distribution, virulence, and host range. The results indicated that 213 fungal collections were from 11 genera in Didymellaceae, ten of which are known, and one is potentially new. Didymella, Epicoccum, Remotididymella, and Mesophoma were the dominant genera, accounting for 93% of total isolates. The virulence and host ranges of these fungi were related to their phylogenetic relationship. Boeremia exigua, Epicoccum latusicollum, and E. sorghinum were found to be strongly virulent toward all tested native plants as well as toward A. adenophora; M. speciosa and M. ageratinae were weakly virulent toward native plants but strongly virulent toward A. adenophora, thus displaying a narrow host range. Co-evolution analysis showed no strong phylogenetical signal between Didymellaceae and host plants. Isolates S188 and Y122 (belonging to M. speciosa and M. ageratinae, respectively) showed strong virulence toward A. adenophora relative to native plants, highlighting their potential as biocontrol agents for A. adenophora invasion. This study provides new insights into the understanding of the long-term ecological consequences of disease transmission driven by plant invasion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA