Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Cell Commun Signal ; 22(1): 499, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407270

RESUMO

BACKGROUND: Spermidine (SPD) is an intermediate compound in the polyamine metabolism which takes critical part in a variety of cellular processes. In particular, it has been reported to exert anti-aging effects, suppress the age-related diseases, and extend lifespan across species. However, whether it has the favorable influence on the quality of postovulatory aged oocytes remains elusive. METHODS: Immunostaining and fluorescence intensity measurement were used to evaluate the effects of postovulatory aging and SPD supplementation on the oocyte fragmentation, spindle/chromosome structure, actin polymerization, dynamics of cortical granules (CGs) and ovastacin, mitochondrial distribution and function, as well as autophagy levels. In addition, in vitro sperm binding assay and in vitro fertilization (IVF) experiment were applied to assess the impacts of postovulatory aging and SPD supplementation on the sperm binding ability and fertilization capacity of oocytes. RESULTS: Here, we showed that supplementation of SPD during postovulatory aging could relieve the deterioration of porcine oocytes. Specifically, we found that postovulatory aging impaired the oocyte quality by damaging the morphological integrity of oocytes, maintenance of spindle/chromosome structure, and dynamics of actin cytoskeleton. Postovulatory aging also weakened the sperm binding ability and fertilization capacity of oocytes by compromising the distribution pattern of CGs and their content ovastacin. Notably, supplementation of SPD attenuated these defects in postovulatory aged porcine oocytes via strengthening mitochondrial function, eliminating excessive reactive oxygen species (ROS), inhibiting apoptosis, and enhancing autophagy levels. CONCLUSION: Altogether, our findings demonstrate that SPD supplementation is a feasible approach to ameliorate the quality of postovulatory aged oocytes, which can be potentially applied to the human assisted reproductive technology (ART) and in vitro production of animal embryos.


Assuntos
Oócitos , Espermidina , Animais , Oócitos/efeitos dos fármacos , Oócitos/citologia , Espermidina/farmacologia , Suínos , Feminino , Ovulação/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Masculino , Fertilização in vitro , Espécies Reativas de Oxigênio/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; : 167536, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39378967

RESUMO

Adipokines play key roles in adaptive thermogenesis of beige adipocytes, though its detailed regulatory mechanisms are not fully understood. In the present study, we identify a critical function of vascular endothelial growth factor B (VEGFB)/vascular endothelial growth factor receptor 1 (VEGFR1) signaling in improving thermogenesis in white adipose tissue (WAT). In mouse subcutaneous WAT (scWAT), thermogenesis activation leads to the up-regulation of VEGFB in adipocytes and its receptor VEGFR1 in macrophages. Ablation of adipocyte VEGFB results in deficiency in murine WAT browning. Meanwhile, supplementation of VEGFB promotes WAT thermogenesis, but this effect is blocked by knockout of macrophage VEGFR1. Mechanistic studies show that the VEGFB-activated VEGFR1 inhibits p38 MAPK signaling through its dissociation with receptor for activated C kinase 1, thereby preventing norepinephrine transporter (solute carrier family 6 member 2) and norepinephrine-degrative monoamine oxidase a mediated norepinephrine clearance in macrophages. Our findings demonstrate that VEGFB/VEGFR1 circuit contributes to the WAT thermogenesis.

4.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39412354

RESUMO

The trigger generator made with a spiral generator (SG) has the advantages of light weight, compact structure, and low cost and has promising applications in the pulsed power field. This paper introduces a compact solid-state high-voltage pulse trigger system based on an improved SG, which has improved repetition rate and lowered the demands for semiconductor switches' maximum current and current rise rate when compared with previous studies. The improvement is achieved by winding outward an additional layer of the passive layer and low-voltage metal strip, which realizes a significant reduction of the peak current and current rise rate of the discharge switch. The final dimension of the trigger is 25 × 10 × 10 cm3, excluding the power supply. An experiment carried out in single shot mode shows that the peak value of the output pulse can reach 50 kV with a leading edge of 57 ns. Repetitive experiments were carried out up to 1 kHz, with the peak voltage of the output pulse being 30.5 kV, the leading edge being 48 ns, and the jitter being 0.84 ns. Finally, the generator is used to trigger a gas switch, and it works stably and reliably.

5.
Cells ; 13(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39329710

RESUMO

Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.


Assuntos
Neoplasias da Mama , Linfócitos T Reguladores , Microambiente Tumoral , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Linfócitos T Reguladores/imunologia , Feminino , Microambiente Tumoral/imunologia , Animais , Imunoterapia/métodos
6.
Stem Cell Reports ; 19(10): 1489-1504, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39270650

RESUMO

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPDs) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop codons (iSTOP) that lead to mRNA nonsense-mediated decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 genes. Using RNA sequencing (RNA-seq), we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Despite high editing efficiency, three schizophrenia risk genes (SETD1A, TRIO, and CUL1) only had heterozygous LoF alleles, suggesting their essential roles for cell growth. We found that CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.


Assuntos
Alelos , Células-Tronco Pluripotentes Induzidas , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Transtornos do Neurodesenvolvimento/genética , Transtornos Mentais/genética , Edição de Genes , Degradação do RNAm Mediada por Códon sem Sentido , Mutagênese , Códon sem Sentido , Predisposição Genética para Doença , Sistemas CRISPR-Cas , Proteínas Culina/genética
7.
J Ethnopharmacol ; 337(Pt 1): 118795, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278293

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicine (TCM) has a rich history spanning 2000 years. Shuanghuanglian, a traditional Chinese herbal formula composed of three botanicals, is primarily used to treat colds, respiratory infections (including bacterial pneumonia), and pharyngitis. Previous research has found that the volatile oil of Shuanghuanglian is crucial for its efficacy. However, there is a lack of studies investigating its mechanisms. AIM OF THE STUDY: This study aims to explore the antibacterial and anti-inflammatory mechanisms of Shuanghuanglian volatile oil and its potential to enhance the antibacterial effects when used in conjunction with antibiotics. METHODS: Determination of the GC-MS fingerprint of SVO using Gas Chromatography-Mass Spectrometry (GC-MS), The antibacterial effects of SVO on multidrug-resistant Klebsiella pneumoniae (MDR-KP) were assessed by detecting MIC, checkerboard method assay, time-kill curves, resistance growth curves, transcriptome sequencing analysis, scanning electron microscopy(SEM), purification, and quantitative analysis of extracellular polysaccharides(EPS). In vivo part, an MDR-KP induced mouse pneumonia model was established to evaluate the mitigating effects of SVO on mouse pneumonia, using comprehensive network pharmacology and bioinformatics to identify genes related to bacterial pneumonia and potential targets of SVO. Validation was performed through molecular docking, qPCR, and ELISA tests. RESULTS: SVO modulates the expression of MDR-KP mRNA for wecB, wecC, murA, murD, murE, murF, inhibiting the synthesis of O-antigen polysaccharides and peptidoglycans, thereby compromising bacterial cell wall integrity and affecting the synthesis of biofilms. These actions not only exhibit antibacterial effects but also enhance antibacterial activity, restoring the sensitivity of CEF to MDR-KP. SVO suppresses the biological activity of PTGS2, reducing the production of Prostaglandin E2 (PGE2), thereby exerting antipyretic and anti-inflammatory effects, providing new insights for the development of natural non-steroidal anti-inflammatory drugs (NSAIDs). CONCLUSIONS: Our research indicates that SVO exerts antipyretic, anti-inflammatory, and antibacterial synergistic effects through multiple pathways.

8.
Virol Sin ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265703

RESUMO

Respiratory syncytial virus (RSV) is a significant cause of acute lower respiratory tract infection (ALRTI) in children under five years of age. Between 2017 and 2021, 396 complete sequences of the RSV F gene were obtained from 500 RSV-positive throat swabs collected from ten hospitals across nine provinces in China. In addition, 151 sequences from China were sourced from GenBank and GISAID, making a total of 549 RSV F gene sequences subjected to analysis. Phylogenetic and genetic diversity analyses revealed that the RSV F genes circulating in China from 2017 to 2021 have remained relatively conserved, although some amino acids (AAs) have undergone changes. AA mutations with frequencies ≥ 10% were identified at six sites and the p27 region: V384I (site I), N276S (site II), R213S (site Ø), and K124N (p27) for RSV A; F45L (site I), M152I/L172Q/S173 â€‹L/I185V/K191R (site V), and R202Q/I206M/Q209R (site Ø) for RSV B. Comparing mutational frequencies in RSV-F before and after 2020 revealed minor changes for RSV A, while the K191R, I206M, and Q209R frequencies increased by over 10% in RSV B. Notably, the nirsevimab-resistant mutation, S211N in RSV B, increased in frequency from 0% to 1.15%. Both representative strains aligned with the predicted RSV-F structures of their respective prototypes exhibited similar conformations, with low root-mean-square deviation values. These results could provide foundational data from China for the development of RSV mAbs and vaccines.

9.
ACS Appl Bio Mater ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39241192

RESUMO

In this work, we develop recombinant human cationic ferritin (rHCF) as a contrast agent to detect glomeruli in the kidney using positron emission tomography (PET). We first expressed recombinant human ferritin (rHF) in E. coli and then functionalized and radiolabeled it with Copper-64 (64Cu) to form 64Cu-rHCF. Intravenously injected 64Cu-rHCF bound to kidney glomeruli and was detected by PET. A subchronic toxicity study after an intravenous injection of rHCF revealed no significant toxicity. The development of rHCF is an important step toward the potential clinical translation of CF to detect the nephron number in humans.

10.
Cell Mol Immunol ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349742

RESUMO

The hypersecretion of cytokines triggers life-threatening systemic inflammatory response syndrome (SIRS), leading to multiple organ dysfunction syndrome (MODS) and mortality. Although both coagulopathy and necroptosis have been identified as important factors in the pathogenesis of SIRS, the specific cell types that undergo necroptosis and the interrelationships between coagulopathy and necroptosis remain unclear. In this study, we utilized visualization analysis via intravital microscopy to demonstrate that both anticoagulant heparin and nonanticoagulant heparin (NAH) pretreatment protect mice against TNF-α-induced mortality in SIRS. Moreover, the deletion of Mlkl or Ripk3 resulted in decreased coagulation and reduced mortality in TNF-α-induced SIRS. These findings suggest that necroptosis plays a key role upstream of coagulation in SIRS-related mortality. Furthermore, using a genetic lineage tracing mouse model (Tie2-Cre;Rosa26-tdT), we tracked endothelial cells (ECs) and verified that EC necroptosis is responsible for the vascular damage observed in TNF-α-treated mice. Importantly, Mlkl deletion in vascular ECs in mice had a similar protective effect against lethal SIRS by blocking EC necroptosis to protect the integrity of the endothelium. Collectively, our findings demonstrated that RIPK3-MLKL-dependent necroptosis disrupted vascular integrity, resulting in coagulopathy and multiorgan failure, eventually leading to mortality in SIRS patients. These results highlight the importance of targeting vascular EC necroptosis for the development of effective treatments for SIRS patients.

11.
Fish Shellfish Immunol ; 154: 109918, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307257

RESUMO

Gill remodeling is an important strategy for fish to cope with hypoxia, and many of the teleost possess this ability, but the underlying mechanism is not well understood. To investigate the mechanism of hypoxia-induced gill remodeling, largemouth bass (Micropterus salmoides) exposed to hypoxia (dissolved oxygen level: 2.0 ± 0.2 mg L-1) for 7 days, followed by 7 days of reoxygenation. Hypoxia tests were also performed on primary gill cells from largemouth bass. We found that hypoxia-induced gill remodeling increased the respiratory surface area of the gills. This change in gill morphology was reversible and recovered after reoxygenation. A reduction in the number of mucous cells and rearrangement of mitochondria-rich cells (MRCs) were observed during gill remodeling. After 7 days of reoxygenation, the number of mucous cells and the position of the MRCs were restored. Hypoxia resulted in a 2.92-fold increase in the number of primary gill cells that underwent migration over a 12-h period. The mRNA levels of nine integrin subunits (α1, α2, α5, α7, α8, α10, αL, ß1 and ß2) were significantly up-regulated after 12 h of hypoxia in vivo, and the changes in the expression of these subunits were consistent with the HIF-1α trend. Immunohistochemistry showed that integrin ß1 protein levels were significantly increased and were abundantly expressed in the interlamellar cell mass after exposure to hypoxia. Taken together, the results of the present study demonstrated that changes in mucosal cells and MRCs play an important role in hypoxia-induced gill remodeling in largemouth bass and that these changes are regulated by integrins.

12.
Plants (Basel) ; 13(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39273848

RESUMO

Medicago truncatula is a key model plant for studying legume plants, particularly alfalfa (Medicago sativa), due to its well-defined genetic background. Plant-specific GASA (Gibberellic Acid Stimulated Arabidopsis) genes play various roles in plant growth and development, abiotic stress, and hormone responses. However, limited information is available on GASA research in Medicago. In this study, 26 MtGASAs were identified and analyzed for its structure, evolution, and expressions. Sequence alignments and phylogeny revealed that 26 MtGASAs containing conserved GASA domains were classified into three clades. The chromosomal locations and gene synteny revealed segmental and tandem repetition evolution. Analysis of cis-regulatory elements indicates that family members likely influence various hormone signaling pathways and stress-related mechanisms. Moreover, the RNA-seq and qRT-PCR analyses revealed that 26 MtGASAs were extensively involved in abiotic stresses and hormone responses. Notably, seven MtGASA genes (MtGASA1, 10, 12, 17, 23, 25 and 26) were all dramatically activated by NaCl and Mannitol treatments, and four MtGASAs (MtGASA7, 10, 23 and 24) were significant activated by GA3, PBZ, ABA, and MeJA treatments. Collectively, this study is the first to identify and describe GASA genes in Medicago on a genome-wide scale. The results establish a basis for functional characterization, showing that these proteins are essential in responding to various abiotic stresses and hormonal signals.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39283792

RESUMO

Video anomaly detection (VAD) plays a crucial role in intelligent surveillance. However, an essential type of anomaly named scene-dependent anomaly is overlooked. Moreover, the task of video anomaly anticipation (VAA) also deserves attention. To fill these gaps, we build a comprehensive dataset named NWPU Campus, which is the largest semi-supervised VAD dataset and the first dataset for scene-dependent VAD and VAA. Meanwhile, we introduce a novel forward-backward framework for scene-dependent VAD and VAA, in which the forward network individually solves the VAD and jointly solves the VAA with the backward network. Particularly, we propose a scene-dependent generative model in latent space for the forward and backward networks. First, we propose a hierarchical variational auto-encoder to extract scene-generic features. Next, we design a score-based diffusion model in latent space to refine these features more compact for the task and generate scene-dependent features with a scene information auto-encoder, modeling the relationships between video events and scenes. Finally, we develop a temporal loss from key frames to constrain the motion consistency of video clips. Extensive experiments demonstrate that our method can handle both scene-dependent anomaly detection and anticipation well, achieving state-of-the-art performance on ShanghaiTech, CUHK Avenue, and the proposed NWPU Campus datasets.

14.
Foods ; 13(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39272433

RESUMO

The oil derived from Psidium guajava seeds (TKSO) exhibits an abundance of diverse unsaturated fatty acids, notably oleic, linoleic, and α-linolenic acids, conferring substantial health advantages in addressing metabolic irregularities and human diseases. This research endeavor focused on elucidating the impacts of TKSO on colonic inflammatory responses and intestinal microbiota alterations in a murine model of colitis induced by dextran sulfate sodium (DSS), demonstrated that substantial supplementation with TKSO reduces the severity of colitis induced by DSS. Furthermore, TKSO effectively attenuated the abundance and expression of proinflammatory mediators while augmenting the expression of tight junction proteins in DSS-challenged mice. Beyond this, TKSO intervention modulated the intestinal microbial composition in DSS-induced colitis mice, specifically by enhancing the relative presence of Lactobacillus, Norank_f_Muribaculaceae, and Lachnospiraceae_NK4A136_group, while concurrently diminishing the abundance of Turicibacter. Additionally, an analysis of short-chain fatty acids (SCFAs) revealed noteworthy elevations in acetic, propionic, isobutyric, and butyric acids, and total SCFAs levels in TKSO-treated mice. In summary, these findings underscore the potential of TKSO to reduce the severity of colitis induced by DSS in mice through intricate modulation of the intestinal microbiota, metabolite profiles, and intestinal barrier repair, thereby presenting a promising avenue for the development of therapeutic strategies against intestinal inflammatory conditions.

15.
Faraday Discuss ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308396

RESUMO

Metal ions are irreplaceable in many areas of chemistry, including (bio)catalysis, self-assembly and charge transfer processes. Yet, modelling their structural and dynamic properties in diverse chemical environments remains challenging for both force fields and ab initio methods. Here, we introduce a strategy to train machine learning potentials (MLPs) using MACE, an equivariant message-passing neural network, for metal-ligand complexes in explicit solvents. We explore the structure and ligand exchange dynamics of Mg2+ in water and Pd2+ in acetonitrile as two illustrative model systems. The trained potentials accurately reproduce equilibrium structures of the complexes in solution, including different coordination numbers and geometries. Furthermore, the MLPs can model structural changes between metal ions and ligands in the first coordination shell, and reproduce the free energy barriers for the corresponding ligand exchange. The strategy presented here provides a computationally efficient approach to model metal ions in solution, paving the way for modelling larger and more diverse metal complexes relevant to biomolecules and supramolecular assemblies.

16.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253422

RESUMO

The non-homologous end-joining (NHEJ) pathway is critical for DNA double-strand break repair and is essential for lymphocyte development and maturation. The Ku70/Ku80 heterodimer (KU) binds to DNA ends, initiating NHEJ and recruiting additional factors, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs) that caps the ends and pushes KU inward. The C-terminus of Ku70 in higher eukaryotes includes a flexible linker and a SAP domain, whose physiological role remains poorly understood. To investigate this, we generated a mouse model with knock-in deletion of the SAP domain ( Ku70 ΔSAP/ΔSAP ). Ku70 ΔSAP supports KU stability and its recruitment to DNA damage sites in vivo . In contrast to the growth retardation and immunodeficiency seen in Ku70 -/- mice, Ku70 ΔSAP/ΔSAP mice show no defects in lymphocyte development and maturation. Structural modeling of KU on long dsDNA, but not dsRNA suggests that the SAP domain can bind to an adjacent major groove, where it can limit KU's rotation and lateral movement along the dsDNA. Accordingly, in the absence of DNA-PKcs that caps the ends, Ku70 ΔSAP fails to support stable DNA damage-induced KU foci. In DNA-PKcs -/- mice, Ku70 ΔSAP abrogates the leaky T cell development and reduces both the qualitative and quantitative aspects of residual V(D)J recombination. In the absence of DNA-PKcs, purified Ku70 ΔSAP has reduced affinity for DNA ends and dissociates more readily at lower concentration and accumulated as multimers at high concentration. These findings revealed a physiological role of the SAP domain in NHEJ by restricting KU rotation and lateral movement on DNA that is largely masked by DNA-PKcs. Highlight: Ku70 is a conserved non-homologous end-joining (NHEJ) factor. Using genetically engineered mouse models and biochemical analyses, our study uncovered a previously unappreciated role of the C-terminal SAP domain of Ku70 in limiting the lateral movement of KU on DNA ends and ensuring end protection. The presence of DNA-PKcs partially masks this role of the SAP domain.

17.
J Gen Virol ; 105(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39163113

RESUMO

The unenveloped Bluetongue virus capsid comprises several structural layers, the inner two comprising a core, which assembles before addition of the outer proteins, VP2 and VP5. Two symmetric trimers of VP5 fit like pegs into two distinct pits on the core and undergo pH conformational changes in the context of the virus, associated with cell entry. Here we show that in isolation VP5 alone undergoes essentially the same changes with pH and confirm a helical transition, indicating that VP5 is a motor during cell entry. In the absence of VP5 the two pits on the core differ from each other, presumably due to the asymmetric underlying structure of VP3, the innermost capsid protein. On insertion of VP5 these pits become closely similar and remain similar at low pH whilst VP5 is present. This natural asymmetry presumably destabilises the attachment of VP5, facilitating ejection upon low pH, membrane penetration and cell entry.


Assuntos
Vírus Bluetongue , Proteínas do Capsídeo , Vírus Bluetongue/fisiologia , Vírus Bluetongue/química , Concentração de Íons de Hidrogênio , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Internalização do Vírus , Animais , Conformação Proteica
18.
Injury ; 55(11): 111829, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39191101

RESUMO

OBJECTIVES: To summarize the clinical features of pediatric femoral neck fractures and analyze the risk factors for avascular necrosis of the femoral head. METHODS: A retrospective analysis of the case data of pediatric femoral neck fractures treated in our hospital from January 2010 to December 2022, including gender, age, fracture type, causative factors, and surgical details. The occurrence of avascular necrosis of the femoral head was recorded and risk factors were analyzed. RESULTS: From January 2010 to December 2022, a total of 45 cases of femoral neck fractures were treated in our hospital with a median age at onset of 93 months (IQR=81) and a median time from injury to surgery of 96 hours (IQR=46). Closed reduction was performed in 36 cases, while open reduction was performed in 9 cases. Avascular necrosis of the femoral head occurred in 29 cases postoperatively, while it did not occur in 16 cases. Increased time from injury to surgery and greater degree of fracture displacement were independent risk factors for avascular necrosis of the femoral head. The risk of avascular necrosis in Garden IV type femoral neck fractures was significantly higher than in Garden II and III type patients. An injury-to-surgery time exceeding 82.5 hours was identified as a critical threshold for the development of avascular necrosis of the femoral head. CONCLUSION: Pediatric femoral neck fractures have a low incidence rate and are mostly caused by high-energy trauma, often resulting in severe injuries. Therefore, actively maintaining stable vital signs and properly managing associated injuries, timely surgical intervention for femoral neck fractures, achieving good reduction and fixation of displaced fractures are crucial in the treatment of pediatric femoral neck fractures.


Assuntos
Fraturas do Colo Femoral , Necrose da Cabeça do Fêmur , Humanos , Fraturas do Colo Femoral/cirurgia , Fraturas do Colo Femoral/complicações , Necrose da Cabeça do Fêmur/etiologia , Necrose da Cabeça do Fêmur/epidemiologia , Necrose da Cabeça do Fêmur/cirurgia , Masculino , Feminino , Estudos Retrospectivos , Criança , Fatores de Risco , Estudos de Casos e Controles , Pré-Escolar , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/efeitos adversos , Tempo para o Tratamento/estatística & dados numéricos , China/epidemiologia , Complicações Pós-Operatórias
19.
Antioxidants (Basel) ; 13(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39199159

RESUMO

Our preliminary study identified dairy cow placenta extract (CPE) as a mixture of peptides with potent antioxidant activity both in vivo and in vitro. However, the specific antioxidant peptides (AOPs) responsible for this activity were not yet identified. In the current study, we employed virtual screening and chromatography techniques to isolate two peptides, ANNGKQWAEVF (CP1) and QPGLPGPAG (CP2), from CPE. These peptides were found to be less stable under extreme conditions such as high temperature, strong acid, strong alkali, and simulated digestive conditions. Nevertheless, under normal physiological conditions, both CP1 and CP2 exhibited significant antioxidant properties, including free-radical scavenging, metal chelating, and the inhibition of lipid peroxidation. They also up-regulated the activities of intracellular antioxidant enzymes in response to hydrogen-peroxide-induced oxidative stress, resulting in reduced MDA levels, a decreased expression of the Keap1 gene and protein, and increased levels of the Nrf2 and HO-1 genes and proteins. Furthermore, CP1 demonstrated superior antioxidant activity compared to CP2. These findings suggest that CP1 and CP2 hold potential for mitigating oxidative stress in vitro and highlight the efficacy of virtual screening as a method for isolating AOPs within CPE.

20.
Environ Pollut ; 360: 124680, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39116922

RESUMO

Antibiotics and antibiotic resistance genes (ARGs) in the aquaculture environment are receiving increasing public attention as emerging contaminants. In this study, aquatic plant (P) and sediment microbial fuel cells (SMFC) were used individually and in combination (P-SMFC) to simulate in situ remediation of sulfamethoxazole (SMX) and sul genes in aquaculture environments. The results showed that the average power densities of SMFC and P-SMFC were 622.18 mW m-2 and 565.99 mW m-2, respectively. The addition of 5 mg kg-1 of SMX to the sediment boosted the voltages of SMFC and P-SMFC by 36.3% and 51.5%, respectively. After 20 days of treatment, the removal efficiency of SMX from the sediment was 86.17% and 89.60% for SMFC and P-SMFC group, respectively, which were significantly higher than the control group (P < 0.05). However, removal of SMX by plants was not observed. P-SMFC group significantly reduced the biotoxicity of SMX to Staphylococcus aureus and Escherichia coli in the overlying water (P < 0.05). P and P-SMFC groups significantly reduced the abundance of ARGs intl1 and sul1 (P < 0.05). The removal rate of ARGs intl1, sul1 and sul2 from sediments by P-SMFC ranged from 94.22% to 97.08%. However, SMFC increased the abundance of sul3. SMFC and P-SMFC increased the relative abundance of some of sulfate-reducing bacteria such as Desulfatiglans, Thermodesulfovibrionia and Sva0485 in sediments. These results showed that aquatic plants promoted the removal of ARGs and SMFC promoted the removal of antibiotics, and the combination with aquatic plants and SMFC achieved a synergistic removal of both SMX and ARGs. Therefore, current study provides a promising approach for the in situ removal of antibiotics and ARGs in the aquaculture environment.


Assuntos
Aquicultura , Fontes de Energia Bioelétrica , Sedimentos Geológicos , Sulfametoxazol , Poluentes Químicos da Água , Sedimentos Geológicos/química , Lagoas , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA