Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Inflammopharmacology ; 32(2): 1277-1294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407703

RESUMO

OBJECTIVE: Ferroptosis has been reported to play a role in rheumatoid arthritis (RA). Sulfasalazine, a common clinical treatment for ankylosing spondylitis, also exerts pathological influence on the progression of rheumatoid arthritis including the induced ferroptosis of fibroblast-like synoviocytes (FLSs), which result in the perturbated downstream signaling and the development of RA. The aim of this study was to investigate the underlying mechanism so as to provide novel insight for the treatment of RA. METHODS: CCK-8 and Western blotting were used to assess the effect of sulfasalazine on FLSs. A collagen-induced arthritis mouse model was constructed by the injection of collagen and Freund's adjuvant, and then, mice were treated with sulfasalazine from day 21 after modeling. The synovium was extracted and ferroptosis was assessed by Western blotting and immunofluorescence staining. RESULTS: The results revealed that sulfasalazine promotes ferroptosis. Compared with the control group, the expression levels of ferroptosis-related proteins such as glutathione peroxidase 4, ferritin heavy chain 1, and solute carrier family 7, member 11 (SLC7A11) were lower in the experimental group. Furthermore, deferoxamine inhibited ferroptosis induced by sulfasalazine. Sulfasalazine-promoted ferroptosis was related to a decrease in ERK1/2 and the increase of P53. CONCLUSIONS: Sulfasalazine promoted ferroptosis of FLSs in rheumatoid arthritis, and the PI3K-AKT-ERK1/2 pathway and P53-SLC7A11 pathway play an important role in this process.


Assuntos
Artrite Reumatoide , Ferroptose , Camundongos , Animais , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Artrite Reumatoide/metabolismo , Células Cultivadas , Proliferação de Células
2.
J Agric Food Chem ; 71(51): 20690-20700, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100375

RESUMO

Aspongamide F (1), a novel N-acetyldopamine (NADA) dimer possessing a 6/6/6 ring system, and (±)-aspongamides G (2) and H (3), rare NADA derivatives with fragmented benzene rings, were isolated from Aspongopus chinensis. (±)-Cicadamides C (4) and D (5), the first 1,4-Benzodioxane NADA dimers featuring a seco-benzene system, and (±)-cicadamides E (6) and F (7), the NADA dimers derivatives, were isolated from Periostracum cicadae. The structures of all compounds were elucidated by spectroscopic analyses and computational methods. A plausible biosynthetic pathway for compounds 1-5 was proposed. The biological assay revealed that (+)-4 and (-)-4 exhibit renal protection in a dose-dependent manner.


Assuntos
Benzeno , Heterópteros , Animais , Insetos
3.
J Cell Physiol ; 238(11): 2546-2555, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642406

RESUMO

Melanoma is the most aggressive form of skin cancer with rapidly increased incidence worldwide especially in the Caucasian population. Surgical excision represents the curative treatment choice in patients with early-stage disease. However, the therapeutic outcomes in patients with metastatic melanoma remains unsatisfactory. Thus, understanding molecular mechanisms contributing to metastasis and chemoresistance is critical for new improved therapies of melanoma. Snail1, an important epithelial-mesenchymal transition transcription factors (EMT-TFs), is critical to induce the EMT process, thereby contributing to cancer metastasis. However, the involvement of Snail1 in melanoma metastasis remains elusive and the underlying mechanism to regulate Snail1 in melanoma needs to be further investigated. Here, we identified OTUD4 as a novel deubiquitinase of Snail1 in melanoma. Moreover, the depletion of OTUD4 in melanoma cells markedly inhibited Snail1 stability and Snail1-driven malignant phenotypes both in vitro and in vivo. Overall, our study establishes OTUD4 as a novel therapeutic target in metastasis and chemoresistance of melanoma by stabilizing Snail1 and provides a rationale for potential therapeutic strategies of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos Nus , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição/genética , Proteases Específicas de Ubiquitina
4.
Cell Death Differ ; 30(4): 1082-1095, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813923

RESUMO

The VHL protein (pVHL) functions as a tumor suppressor by regulating the degradation or activation of protein substrates such as HIF1α and Akt. In human cancers harboring wild-type VHL, the aberrant downregulation of pVHL is frequently detected and critically contributes to tumor progression. However, the underlying mechanism by which the stability of pVHL is deregulated in these cancers remains elusive. Here, we identify cyclin-dependent kinase 1 (CDK1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) as two previously uncharacterized regulators of pVHL in multiple types of human cancers harboring wild-type VHL including triple-negative breast cancer (TNBC). PIN1 and CDK1 cooperatively modulate the protein turnover of pVHL, thereby conferring tumor growth, chemotherapeutic resistance and metastasis both in vitro and in vivo. Mechanistically, CDK1 directly phosphorylates pVHL at Ser80, which primes the recognition of pVHL by PIN1. PIN1 then binds to phosphorylated pVHL and facilitates the recruitment of the E3 ligase WSB1, therefore targeting pVHL for ubiquitination and degradation. Furthermore, the genetic ablation or pharmacological inhibition of CDK1 by RO-3306 and PIN1 by all-trans retinoic acid (ATRA), the standard care for Acute Promyelocytic Leukemia could markedly suppress tumor growth, metastasis and sensitize cancer cells to chemotherapeutic drugs in a pVHL dependent manner. The histological analyses show that PIN1 and CDK1 are highly expressed in TNBC samples, which negatively correlate with the expression of pVHL. Taken together, our findings reveal the previous unrecognized tumor-promoting function of CDK1/PIN1 axis through destabilizing pVHL and provide the preclinical evidence that targeting CDK1/PIN1 is an appealing strategy in the treatment of multiple cancers with wild-type VHL.


Assuntos
Proteína Quinase CDC2 , Neoplasias de Mama Triplo Negativas , Humanos , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteína Quinase CDC2/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Tretinoína/farmacologia
5.
Adv Sci (Weinh) ; 10(11): e2205873, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36782089

RESUMO

Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. TWIST1, a key transcriptional factor of epithelial-mesenchymal transition (EMT), contributes to self-renewal of cancer stem-like cells (CSCs), chemo-resistance, metastasis, and TNBC-related death. However, the mechanism by which TWIST1 is deregulated in TNBC remains elusive. Here, USP29 is identified as a bona fide deubiquitinase of TWIST1. The deubiquitination of TWIST1 catalyzed by USP29 is required for its stabilization and subsequent EMT and CSC functions in TNBC, thereby conferring chemotherapeutic resistance and metastasis. Furthermore, the results unexpectedly reveal that CDK1 functions as the direct USP29 activator. Mechanistically, CDK1-mediated phosphorylation of USP29 is essential for its deubiquitinase activity toward TWIST1 and TWIST1 driven-malignant phenotypes in TNBC, which could be markedly mitigated by the genetic ablation or pharmacological inhibition of CDK1. Moreover, the histological analyses show that CDK1 and USP29 are highly upregulated in TNBC samples, which positively correlate with the expression of TWIST1. Taken together, the findings reveal a previously unrecognized tumor-promoting function and clinical significance of the CDK1-USP29 axis through stabilizing TWIST1 and provide the preclinical evidence that targeting this axis is an appealing therapeutic strategy to conquer chemo-resistance and metastasis in TNBC.


Assuntos
Proteína Quinase CDC2 , Neoplasias de Mama Triplo Negativas , Proteína 1 Relacionada a Twist , Proteases Específicas de Ubiquitina , Humanos , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Proteínas Nucleares/metabolismo , Fosforilação , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína 1 Relacionada a Twist/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Carcinogênese/genética
6.
Fitoterapia ; 164: 105341, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309142

RESUMO

Five new norneolignans sinkianlignans G-K (1-5), one phenolic compound ferulagenol A (6) and seven known compounds (7-13) were isolated from Ferula sinkiangensis. All the norneolignans were racemic mixtures, and chiral HPLC was used to further separate them. Their structures were assigned, including absolute configurations, using spectroscopic and computational methods. Biological evaluation showed that compounds 1-9 had significant COX-2 inhibitory activity with IC50 values ranging from 3.00 µM to 23.19 µM.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ferula , Estrutura Molecular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ferula/química , Ciclo-Oxigenase 2
7.
J Phys Chem A ; 126(33): 5559-5564, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35952653

RESUMO

We investigate photoionization from the ground electronic state of the formaldehyde molecule. Both partial cross sections and asymmetry parameters leading to the X2B2, A2B1, C2B2, and D2A1 states of H2CO+ ions are studied in the photon region of 10-90 eV using a multichannel R-matrix method, which uses the configuration interaction (CI) to describe electronic correlation. We check the sensitivity of the results to change descriptions of the continuum, the different partial waves, and the active spaces in the theoretical model. And we obtain the convergent result of the present calculations. Extensive resonance structures near the ionization threshold are observed for the first time. Our predicted total cross sections and asymmetry parameters differ from these obtained by previous theoretical approaches, all of which neglected correlation effects. The present results were found to agree reasonably well with the available experimental results, suggesting the reliability of our calculations.

8.
Brief Funct Genomics ; 21(3): 188-201, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35348574

RESUMO

Triple-negative breast cancer (TNBC) is the breast cancer subtype with the highest fatality rate, and it seriously threatens women's health. Recent studies found that the level of immune cell infiltration in TNBC was associated with tumor progression and prognosis. However, due to practical constraints, most of these TNBC immune infiltration studies only used a small number of patient samples and a few immune cell types. Therefore, it is necessary to integrate more TNBC patient samples and immune cell types to comprehensively study immune infiltration in TNBC to contribute to the prognosis and treatment of patients. In this study, 12 TNBC datasets were integrated and an extensive collection of 182 gene sets with immune-related signatures were included to comprehensively investigate tumor immune microenvironment of TNBC. A single sample gene set enrichment analysis was performed to calculate the infiltration score of each immune-related signature in each patient, and an immune-related risk scoring model for TNBC was constructed to accurately assess patient prognosis. Significant differences were found in immunogenomic landscape between different immune risk subtypes. In addition, the immunotherapy response and chemotherapy drug sensitivity of patients with different immune risk subtypes were also analyzed. The results showed that there were significant differences in these characteristics. Finally, a prediction model for immune risk subtypes of TNBC patients was constructed to accurately predict patients with unknown subtypes. Based on the aforementioned findings, we believed that the immune-related risk score constructed in this study can assist in providing personalized medicine to TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Prognóstico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral/genética
9.
J Fungi (Basel) ; 8(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35205862

RESUMO

Parabambusicolaceae is a well-studied family in Massarineae, Pleosporales, comprising nine genera and approximately 16 species. The family was introduced to accommodate saprobic bambusicola-like species in both freshwater and terrestrial environments that mostly occur on bamboos and grasses but are also found on different host substrates. In the present study, we surveyed and collected ascomycetes from bamboo and submerged grass across Yunnan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny demonstrated five new taxa in Parabambusicolaceae. A novel genus Scolecohyalosporium is introduced as a monotypic genus to accommodate S. submersum sp. nov., collected from dead culms of grass submerged in a freshwater stream. The genus is unique in forming filiform ascospores, which differ from other known genera in Parabambusicolaceae. Multigene phylogeny showed that the genus has a close relationship with Multiseptospora. Moreover, the novel monotypic genus Neomultiseptospora, isolated from bamboo, was introduced to accommodate N. yunnanensis sp. nov. Neomultiseptospora yunnanensis formed a separated branch basal to Scolecohyalosporium submersum and Multiseptospora thailandica with high support (100% ML, 1.00 PP). Furthermore, the newly introduced species, Parabambusicola hongheensis sp. nov. was also isolated from bamboo in terrestrial habitats. Parabambusicola hongheensis clustered with the other three described Parabambusicola species and has a close relationship with P. bambusina with significant support (88% ML, 1.00 PP). Parabambusicola hongheensis was reported as the fourth species in this genus. Detailed description, illustration, and updated phylogeny of Parabambusicolaceae were provided.

10.
Front Chem ; 9: 783705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926404

RESUMO

Eleven new cyclohexane-type meroterpenoids (1, 3-5, 7, 8, 11-15) and four known similar meroterpenoids (2, 6, 9, and 10) were isolated from Ganoderma cochlear. Their structures and absolute configurations at stereogenic centers were elucidated by using HRESIMS, NMR spectroscopy and computational methods. In addition, the structure of the known meroterpenoid, cochlearol G (2), was revised, and the absolute configurations at the stereogenic centers of known meroterpenoids 9 and 10 were determined. All the isolated meroterpenoids were evaluated for their activities against renal fibrosis and triple negative breast cancer, and their insulin resistance. The results of the renal fibrosis study showed that meroterpenoid 11 inhibits over-expression of fibronectin, collagen I and α-SMA. Results of the wound healing study revealed that 4, 6 and 8 significantly inhibit migration of BT549 cells. Observations made in Western blotting experiments showed that 6 decreases the levels of TWIST1 and ZEB1, and increases the level of E-cadherin. Finally, meroterpenoids 7, 9, 11, and 15 significantly up-regulate p-AMPK protein expression in normal L6 myotubes cells.

11.
Bioorg Chem ; 109: 104706, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607360

RESUMO

Five new meroterpenoids, gancochlearols E - I (1, 3-6), and one compound ganomycin K (2) were isolated from the fruiting bodies of G. cochlear. Their structures were assigned by 1D and 2D NMR, MS, and CD analysis. Rh2(OCOCF3)4-induced ECD method was used to clarify the absolute configuration of secondary alcohol in 1 and 2. Biochemical evaluation showed that all the isolates significantly inhibit COX-2 enzyme in vitro with the IC50 values range from 1.03 µM to 2.71 µM. Further cellular assay revealed that (+)-3 and (-)-6 could suppress metastatic phenotype of triple-negative breast cancer (TNBC) cells via impeding the epithelial-mesenchymal transition (EMT).


Assuntos
Ciclo-Oxigenase 2/metabolismo , Ganoderma/química , Terpenos/química , Terpenos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Carpóforos/química , Humanos , Estrutura Molecular
12.
Fitoterapia ; 143: 104589, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32272163

RESUMO

Six new compounds, periplanetols A - F (1-4, 6 and 7), a compound isolated from natural origin for the first time (5), and nine known ones (8-16) were isolated from the 70% ethanol extract of the whole bodies of Periplaneta americana. Their structures including absolute configurations were unambiguously identified by comprehensive spectroscopic analyses and computational methods. Biological evaluation toward COX-2 inhibition revealed that compounds 1, 2, and 10 could inhibit COX-2 activity with the IC50 values of 768.0 nM, 617.7 nM, and 599.5 nM respectively, indicating their potential in developping novel agents against inflammation related disorders.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Periplaneta/química , Fenóis/farmacologia , Animais , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Estrutura Molecular , Fenóis/isolamento & purificação
13.
Int J Biol Sci ; 16(7): 1180-1193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174793

RESUMO

This study focused on investigating the relationships of TAF1L expression and clinical features or pathological stages of oral squamous cell carcinoma (OSCC), and its potential roles of TAF1L on OSCC development. Western blot and immunohistochemical staining were used to detect TAF1L expression in OSCC tissues and cells. Effects of TAF1L on OSCC cells in vitro were examined by cell proliferation assay, wound healing assay, transwell chamber assay, flow cytometry analysis and siRNA technique. Cellular key proteins related to cell autophagy and apoptosis were evaluated by Western blot and immunofluorescent staining. Moreover, functions of TAF1L on OSCC process were observed in nude mouse model. Testing results showed that expression of TAF1L protein was higher in OSCC tissues than that in normal oral epithelial or paracancerous tissues. Additionally, the level of TAF1L protein expression was upregulated in OSCC cell lines, compared to that in normal oral epithelial cells. Furthermore, cell proliferation, migration, autophagy and apoptosis were modulated post siRNA-TAF1L treatment in vitro. Especially, TAF1L knockdown-induced apoptotic activation on OSCC cells could be rescued by autophagic activator (Rapamycin). Moreover, that overexpression of TAF1L protein could promote the growth of OSCC cell xenografts was confirmed in nude mouse model. Taken together, it suggests that TAF1L may facilitate OSCC cells to escape cell apoptosis via autophagic activation for enhancing OSCC development.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Apoptose/genética , Autofagia/genética , Western Blotting , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Cicatrização/genética , Cicatrização/fisiologia
14.
Fitoterapia ; 142: 104534, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32145314

RESUMO

Seven new compounds including three pairs of enantiomeric xanthine analogues (1-3), a pair of enantiomeric hypoxanthine analogue (4), and three pairs of enantiomeric N-acetyldopamine dimers (6-8), together with a known one (5) were isolated from the insect Cyclopelta parva. Their structures including absolute configurations were assigned by using spectroscopic and computational methods. Chiral HPLC was used to separate racemic 1-8. Biological evaluation found that 6b and 7a are potent COX-2 inhibitory agents with IC50 values at 385.2 nM and 868.8 nM respectively.


Assuntos
Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Dopamina/análogos & derivados , Heterópteros/química , Xantinas/isolamento & purificação , Animais , Inibidores de Ciclo-Oxigenase 2/química , Xantinas/química
15.
Org Lett ; 22(7): 2574-2578, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32167308
16.
Org Lett ; 21(21): 8523-8527, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556302

RESUMO

(±)-Lucidumone (1), an enantiomeric meroterpenoid possessing an unprecedented skeleton comprising a fused 6/5/6/6/5 polycyclic system, was isolated from Ganoderma lucidum and structurally identified. The absolute configuration of (-)-1 was assigned by single-crystal X-ray crystallography. A plausible biosynthetic pathway for 1 is proposed. A chemical biology approach reveals that (-)-1 selectively inhibits COX-2 by directly binding with an amino acid residue of Tyr385, representing a new structure scaffold of COX-2 inhibitors.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ganoderma/química , Terpenos/farmacologia , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/química , Modelos Moleculares , Conformação Proteica , Terpenos/química
17.
Nucleic Acids Res ; 47(8): 4124-4135, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30783677

RESUMO

A proper DNA damage response (DDR) is essential to maintain genome integrity and prevent tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion and their repair is orchestrated by the ATM kinase. ATM is activated via the MRE11-RAD50-NBS1 (MRN) complex along with its autophosphorylation at S1981 and acetylation at K3106. Activated ATM rapidly phosphorylates a vast number of substrates in local chromatin, providing a scaffold for the assembly of higher-order complexes that can repair damaged DNA. While reversible ubiquitination has an important role in the DSB response, modification of the newly identified ubiquitin-like protein ubiquitin-fold modifier 1 and the function of UFMylation in the DDR is largely unknown. Here, we found that MRE11 is UFMylated on K282 and this UFMylation is required for the MRN complex formation under unperturbed conditions and DSB-induced optimal ATM activation, homologous recombination-mediated repair and genome integrity. A pathogenic mutation MRE11(G285C) identified in uterine endometrioid carcinoma exhibited a similar cellular phenotype as the UFMylation-defective mutant MRE11(K282R). Taken together, MRE11 UFMylation promotes ATM activation, DSB repair and genome stability, and potentially serves as a therapeutic target.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Proteína Homóloga a MRE11/genética , Processamento de Proteína Pós-Traducional , Proteínas/genética , Reparo de DNA por Recombinação , Células A549 , Acetilação , Hidrolases Anidrido Ácido , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/patologia , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Proteína Homóloga a MRE11/antagonistas & inibidores , Proteína Homóloga a MRE11/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosforilação , Ligação Proteica , Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ubiquitinação
18.
J Exp Bot ; 69(5): 1109-1123, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29301032

RESUMO

The plant Artemisia annua produces the anti-malarial compound artemisinin. Although the transcriptional regulation of artemisinin biosynthesis has been extensively studied, its post-translational regulatory mechanisms, especially that of protein phosphorylation, remain unknown. Here, we report that an ABA-responsive kinase (AaAPK1), a member of the SnRK2 family, is involved in regulating artemisinin biosynthesis. The physical interaction of AaAPK1 with AabZIP1 was confirmed by multiple assays, including yeast two-hybrid, bimolecular fluorescence complementation, and pull-down. AaAPK1, mainly expressed in flower buds and leaves, could be induced by ABA, drought, and NaCl treatments. Phos-tag mobility shift assays indicated that AaAPK1 phosphorylated both itself and AabZIP1. As a result, the phosphorylated AaAPK1 significantly enhanced the transactivational activity of AabZIP1 on the artemisinin biosynthesis genes. Substituting the Ser37 with Ala37 of AabZIP1 significantly suppressed its phosphorylation, which inhibited the transactivational activity of AabZIP1. Consistent overexpression of AaAPK1 significantly increased the production of artemisinin, as well as the expression levels of the artemisinin biosynthesis genes. Our study opens a window into the regulatory network underlying artemisinin biosynthesis at the post-translational level. Importantly, and for the first time, we provide evidence for why the kinase gene AaAPK1 is a key candidate for the metabolic engineering of artemisinin biosynthesis.


Assuntos
Artemisia annua/genética , Artemisininas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fosfotransferases/genética , Proteínas de Plantas/genética , Artemisia annua/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação , Fosfotransferases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
19.
Front Plant Sci ; 8: 1745, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085381

RESUMO

Scopolia lurida, a native herbal plant species in Tibet, is one of the most effective producers of tropane alkaloids. However, the tropane alkaloid biosynthesis in this plant species of interest has yet to be studied at the molecular, biochemical, and biotechnological level. Here, we report on the isolation and characterization of a putative short chain dehydrogenase (SDR) gene. Sequence analysis showed that SlTRI belonged to the SDR family. Phylogenetic analysis revealed that SlTRI was clustered with the tropine-forming reductases. SlTRI and the other TA-biosynthesis genes, including putrescine N-methyltransferase (SlPMT) and hyoscyamine 6ß-hydroxylase (SlH6H), were preferably or exclusively expressed in the S. lurida roots. The tissue profile of SlTRI suggested that this gene might be involved in tropane alkaloid biosynthesis. By using GC-MS, SlTRI was shown to catalyze the tropinone reduction to yield tropine, the key intermediate of tropane alkaloids. With the purified recombinant SlTRI from Escherichiacoli, an enzymatic assay was carried out; its result indicated that SlTRI was a tropine-forming reductase. Finally, the role of SlTRI in promoting the tropane alkaloid biosynthesis was confirmed through metabolic engineering in S. lurida. Specifically, hairy root cultures of S. lurida were established to investigate the effects of SlTRI overexpression on tropane alkaloid accumulation. In the SlTRI-overexpressing root cultures, the hyoscyamine contents were 1.7- to 2.9-fold higher than those in control while their corresponding scopolamine contents were likewise elevated. In summary, this functional identification of SlTRI has provided for a better understanding of tropane alkaloid biosynthesis. It also provides a candidate gene for enhancing tropane alkaloid biosynthesis in S. lurida via metabolic engineering.

20.
Nat Commun ; 8: 13923, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067227

RESUMO

Tumour metastasis, the spread of cancer cells from the original tumour site followed by growth of secondary tumours at distant organs, is the primary cause of cancer-related deaths and remains poorly understood. Here we demonstrate that inhibition of CDK4/6 blocks breast tumour metastasis in the triple-negative breast cancer model, without affecting tumour growth. Mechanistically, we identify a deubiquitinase, DUB3, as a target of CDK4/6; CDK4/6-mediated activation of DUB3 is essential to deubiquitinate and stabilize SNAIL1, a key factor promoting epithelial-mesenchymal transition and breast cancer metastasis. Overall, our study establishes the CDK4/6-DUB3 axis as an important regulatory mechanism of breast cancer metastasis and provides a rationale for potential therapeutic interventions in the treatment of breast cancer metastasis.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Endopeptidases/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Neoplasias Ovarianas/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Endopeptidases/metabolismo , Feminino , Humanos , Leupeptinas/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/prevenção & controle , Neoplasias Ovarianas/secundário , Piperazinas/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA