Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 111(5): 66, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904018

RESUMO

As one of the most widely used herbicides in agricultural industry, the residues of glyphosate (GLY) are frequent environmental pollutants. Freshwater planarian Dugesia japonica has been developed as a model for neurotoxicology. In this study, the effects of GLY on locomotion and feeding behavior, as well as neuroenzyme activities and mRNA expressions of D. japonica were determined. Additionally, histochemical localization was executed to explore the damage to the central nervous system (CNS) of planarians stressed by GLY. The results showed that the locomotor velocity, ingestion rate and the neuroenzyme activity were inhibited and the gene expressions were altered. Also, histo-architecture injury to CNS of planarians upon GLY exposure in a time-dependent manner was observed. Collectively, our results indicate that GLY can cause neurotoxicity to freshwater planarians representing as reduction in locomotor velocity and feeding rate by disturbing the neurotransmission systems and damaging the structure of CNS.


Assuntos
Planárias , Animais , Planárias/genética , Glicina/toxicidade , Glicina/metabolismo , Glifosato
2.
Aquat Toxicol ; 256: 106425, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36805197

RESUMO

Glyphosate (GLY) is one of the most widely used agrochemicals in the world, and its exposure has become a public health concern. The freshwater planarian is an ideal test organism for detecting the toxicity of pollutants and has been an emerging animal model in toxicological studies. Nevertheless, the underlying toxicity mechanism of GLY to planarians has not been thoroughly explored. To elucidate the toxicity effects and molecular mechanism involved in GLY exposure of planarians, we studied the acute toxicity, histological change, and transcriptional response of Dugesia japonica subjected to GLY. Significant morphological malformations and histopathological changes were observed in planarians after GLY exposure for different times. Also, a number of differentially expressed genes (DEGs) were obtained at 1, 3 and 5 d after exposure; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these DEGs were performed, and a global and dynamic view was obtained in planarians upon GLY exposure at the transcriptomic level. Furthermore, real-time quantitative PCR (qRT-PCR) was conducted on nine DEGs associated with detoxification, apoptosis, stress response, DNA repair, etc. The expression patterns were well consistent with the RNA sequencing (RNA-seq) results at different time points, which confirmed the reliability and accuracy of the transcriptome data. Collectively, our results established that GLY could pose adverse effects on the morphology and histo-architecture of D. japonica, and the planarians are capable of responding to the disadvantageous stress by dysregulating the related genes and pathways concerning immune response, detoxification, energy metabolism, DNA damage repair, etc. To the best of our knowledge, this is the first report of transcriptomic analyses of freshwater planarians exposed to environmental pollutants, and it provided detailed sequencing data deriving from transcriptome profiling to deepen our understanding the molecular toxicity mechanism of GLY to planarians.


Assuntos
Poluentes Ambientais , Herbicidas , Planárias , Poluentes Químicos da Água , Animais , Planárias/genética , Herbicidas/toxicidade , Herbicidas/análise , Reprodutibilidade dos Testes , Poluentes Químicos da Água/toxicidade , Poluentes Ambientais/farmacologia , Glifosato
3.
Bull Environ Contam Toxicol ; 104(6): 804-808, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32372209

RESUMO

As the worldwide top-selling herbicide, glyphosate is ubiquitously distributed in the natural environment, and its influence on the ecological safety and human health has being increasingly concerned. In this study, mRNA expressions of GPX and three heat shock protein genes in freshwater planarian Dugesia japonica in response to glyphosate were determined, and two oxidative stress parameters were measured. The results suggested that GPX activity can be used as a more sensitive biomarker in contrast with GPX gene expression, and mRNA expressions of Hsp70, Hsp90 genes are more sensitive than Hsp40 for planarians in response to glyphosate stress. Besides, the deduced T-AOC as well as varied GPX activity and mRNA expression levels of Hsps also indicated that glyphosate exposure would inhibit antioxidation and induce oxidative stress in D. japonica, while specific antioxidant systems and stress proteins tried to protect cells by their own regulation. The results of this study will be helpful to elucidate the stress response mechanisms of freshwater planarians to herbicide glyphosate.


Assuntos
Expressão Gênica/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Planárias/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Glicina/toxicidade , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Oxidativo/genética , Planárias/genética , Planárias/metabolismo , Glifosato
4.
Ecotoxicology ; 29(3): 295-304, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32088881

RESUMO

As the top-selling herbicide in the world, glyphosate distributes widely in natural environment and its influence on the ecological security and human health has attracted more and more concern. Glutathione S-transferases (GSTs) are a well-characterized superfamily of isoenzymes for cellular defense against exogenous toxic substances and therefore protect organisms from injury. In this study, the complete cDNA sequence of GST gene (named as Dja-GST) in freshwater planarian Dugesia japonica was firstly cloned by means of RACE method. The full-length Dja-GST comprises of 706 nucleotides which encodes a polypeptide of 200 amino acids. Dja-GST has two representative GST domains at the N- and C-termini. The conservative GST-N domain includes G-site Y8, F9, R14, W39, K43, P52 and S64, while the variable GST-C domain contains H-site K104, V156, D159 and L161. Sequence analysis, phylogenetic tree reconstruction and multiple alignment collectively indicate that Dja-GST belongs to the Sigma class of GST superfamily. Also, GST gene expression profile, GST enzymatic activity and MDA content in response to glyphosate exposure were systematically investigated and the correlations among them were analyzed. The results suggest that glyphosate exposure modified the mRNA transcription and enzymatic activity of GST, as well as the MDA content in planarians, indicating that Dja-GST might play an important part in organisms defending against oxidative stress induced by glyphosate. This work lays a molecular foundation for further exploring the exact functions of Dja-GST and gives an important implication for evaluating the ecological environment effects of herbicide glyphosate.


Assuntos
Glutationa Transferase/genética , Glicina/análogos & derivados , Herbicidas/toxicidade , Planárias/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Clonagem Molecular , Água Doce , Glicina/toxicidade , Estresse Oxidativo , Glifosato
5.
Ecotoxicol Environ Saf ; 180: 73-79, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31075718

RESUMO

Heavy metal pollution is a global health issue affecting people worldwide, and the exploration of sensitive biomarkers to assess the toxicity of heavy metals is an important work for researchers. Cathepsin L, role as a tissue-specific biomarker to assess the biological effects of environmental pollutants, has not received much attention. In this work, the full-length cDNA of cathepsin L gene from the planarian Dugesia japonica (designated DjCatL) was cloned by rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of DjCatL is 1161 bp, which encodes a protein of 346 amino acids with a molecular weight of 39.03 kDa. Sequence analysis revealed that DjCatL contains highly conserved ERF/WNIN, GNFD, and GCXGG motifs, which are the features of the cathepsin L protein family. Whole-mount in situ hybridization (WISH) results revealed that the transcripts of DjCatL are specifically distributed in the intestinal system, suggesting that this gene is related to food digestion in planarians. Both quantitative polymerase chain reaction (qPCR) and WISH results revealed that the transcriptional levels of DjCatL are inhibited significantly by heavy metal (Cd2+, Hg2+, and Cu2+) exposure in a dose-dependent manner. Therefore, we proposed that cathepsin L can be used as a tissue-specific biomarker to assess the heavy metal pollution in the aquatic environment.


Assuntos
Catepsina L/genética , Expressão Gênica/efeitos dos fármacos , Metais Pesados/toxicidade , Planárias/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Sequência de Aminoácidos , Animais , Catepsina L/metabolismo , Clonagem Molecular , Biomarcadores Ambientais/efeitos dos fármacos , Planárias/genética , RNA Mensageiro/genética
6.
Aquat Toxicol ; 208: 12-19, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597290

RESUMO

As an important antioxidant enzyme, the superoxide dismutase (SOD) can protect aerobic organisms from oxidative damage through catalyzing the dismutation of superoxide into hydrogen peroxide and oxygen. The SODs have been cloned in some species and their dynamic expression or enzymatic activity in response to environmental stressors were investigated. In the current study, the full-length cDNA of two SODs from freshwater planarian Dugesia japonica were firstly cloned (named as DjCuZnSOD and DjMnSOD, respectively). The complete cDNA of DjCuZnSOD consists of 661 nucleotides encoding 186 amino acids while the 765 bp DjMnSOD encodes a polypeptide of 226 residues. Sequence analysis and multiple alignment showed that DjCuZnSOD possesses two CuZnSOD family signature motifs and an N-terminal signal peptide suggesting it is an extracellular secretory protein. DjMnSOD possesses the MnSOD family signature sequence and is predicted to be located in mitochondrion with a mitochondrial targeting sequence. Phylogenetic analysis based on CuZnSOD and MnSOD orthologs from representative species further verified that DjCuZnSOD is an extracellular CuZnSOD while DjMnSOD is a mitochondrial MnSOD. For the purpose of studying their potential role against environmental pollutants, D. japonica were exposed to glyphosate or 1-decyl-3-methylimidazolium bromide ([C10mim]Br), and the mRNA expression levels of DjCuZnSOD and DjMnSOD along with total SOD activity were measured. The results showed that DjCuZnSOD exhibited more sensitive expression profiles in response to environmental pollutants in contrast with DjMnSOD, and the total SOD activity in response to both pollutants was more related to the expression level of DjCuZnSOD than to DjMnSOD, indicating that the mRNA expression of CuZnSOD would be a more sensitive biomarker than MnSOD in monitoring the pollution of aquatic environment and CuZnSOD might play more important role than MnSOD in eliminating superoxide anions caused by pollutants in D. japonica.


Assuntos
DNA Complementar/genética , Água Doce , Regulação da Expressão Gênica/efeitos dos fármacos , Planárias/enzimologia , Planárias/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade , Sequência de Aminoácidos , Animais , Clonagem Molecular , Filogenia , Planárias/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Fatores de Tempo
7.
Ecotoxicol Environ Saf ; 165: 88-95, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30193168

RESUMO

Catalase (CAT) is an important antioxidant enzyme that protects aerobic organisms against oxidative damage by degrading hydrogen peroxide to oxygen and water. CAT mRNAs have been cloned from many species and employed as useful biomarkers of oxidative stress. In the present study, we cloned the cDNA sequence of CAT gene from freshwater planarian Dugesia japonica (designated as DjCAT) by means of RACE method. Sequence analysis and multiple alignment jointly showed that the full-length cDNA sequence consists of 1734 nucleotides, encoding 506 amino acids. Three catalytic amino acid residues of His71, Asn144 and Tyr354, two CAT family signature sequences of a proximal active site signature (60FDRERIPERVVHAKGGGA77) and a heme-ligand signature motif (350RLFSYRDTQ358) are highly conserved, suggesting that the DjCAT belongs to the NADPH and heme-binding CAT family and has similar functions. In addition, the transcriptional level of CAT gene and activity of CAT enzyme upon acute exposure of environmental pollutants glyphosate and 1-decyl-3-methylimidazolium bromide ([C10mim]Br) were investigated systematically. The variation of CAT mRNA expression in D. japonica was quantified by real-time PCR and the results indicated that it was up-regulated after exposure to glyphosate or [C10mim]Br with a dose-dependent manner but not linearly. Even though the variation trend of CAT activity upon glyphosate stress was not monotonously increased and inconsistent with that after [C10mim]Br exposure on day 1 and 3 sampling time, with the duration prolonged to day 5 they both presented a dose-dependent increase and the differences achieved extreme significance in all treated groups compared to the control. These findings suggested that DjCAT plays an important role in antioxidant defense in D. japonica, and the mRNA expression of CAT would also be used as an effective biomarker to monitor the pollution in aquatic environment just like its corresponding enzyme.


Assuntos
Catalase/genética , Catalase/metabolismo , DNA Complementar/metabolismo , Poluentes Ambientais/farmacologia , Expressão Gênica/efeitos dos fármacos , Planárias/enzimologia , Sequência de Aminoácidos , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Brometos/farmacologia , Clonagem Molecular , Relação Dose-Resposta a Droga , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Imidazóis/farmacologia , Oxirredução , Estresse Oxidativo , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Regulação para Cima/efeitos dos fármacos , Glifosato
8.
Bull Environ Contam Toxicol ; 98(4): 484-488, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28210751

RESUMO

The aim of this study was to evaluate the genotoxic potential of an urban river - the Wei River in Xinxiang, China using randomly amplified polymorphic DNA (RAPD) assay in planarians. The results showed that the total number of polymorphic bands and varied bands in RAPD patterns of treated planarians decreased with the water sample site far away from the sewage outlet of a factory. In addition, the genome template stability of treated groups decreased and the degree of the decline was negatively related to the distance between the sample site and the sewage outlet, suggesting that the Wei River water had genotoxicity effects on planarians and strengthening the management of the Wei River was necessary. Furthermore, this work also indicated that RAPD assay in planarians was a very promising test for environmental monitoring studies.


Assuntos
Dano ao DNA , Planárias/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Rios/química , Poluição da Água/efeitos adversos , Animais , China , Monitoramento Ambiental/métodos
9.
Ecotoxicol Environ Saf ; 134P1: 17-22, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27573364

RESUMO

The randomly amplified polymorphic DNA (RAPD) assay has been used to detect DNA alternation and mutation recently. However, the effectiveness of this method in detecting DNA damage in planarians, a model organism for assessing the toxicity of environmental pollutants is unknown. In the present study, RAPD assay was used to detect the DNA damage in planarians treated by the ionic liquid 1-octyl-3-methylimidazolium bromide ([C8mim]Br) for the first time. Among the 20 test RAPD primers, 13 primers with 60-70% GC content produced unique polymorphic band profiles. A total of 60 bands were observed in the untreated control planarians. In comparison with the control group, the [C8mim]Br-treated groups displayed differences in RAPD patterns in the band intensity, disappearance of normal bands and appearance of new bands. The variation of RAPD profiles showed both concentration- and time-effect relationships. Meanwhile, the genomic template stability (GTS) of treated planarians decreased and exhibited negative correlation to the exposure concentration and time of [C8mim]Br. Our results suggested that [C8mim]Br had genotoxic effects on planarians, and this DNA damage analysis would lay the foundation for further elucidating the toxicity mechanisms of ionic liquids on planarians. Furthermore, RAPD analysis was proved to be a highly sensitive method for the detection of DNA damage induced by environmental pollutants like toxic chemicals on planarians.

10.
Toxicol Ind Health ; 32(9): 1675-83, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25812565

RESUMO

The activities of antioxidant enzymes and the levels of glutathione (GSH) and malondialdehyde (MDA) were determined when freshwater planarian Dugesia japonica was exposed to different concentrations of 1-octyl-3-methylimidazolium bromide ([C8mim]Br) for one, three, and five days. The results showed that superoxide dismutase (SOD) activity began to increase in all treated groups after three days of exposure, while catalase (CAT) activity was inhibited after the first day, but increased notably on the fifth day except for the lowest concentration group. The activity of glutathione peroxidase (GPX) was induced from the first day of exposure and increased significantly after five days in all treated groups. During the experiment, the levels of intracellular GSH in all treated groups were higher than that of the control group. Changes in MDA suggest that [C8mim]Br is toxic to D japonica and may result in lipid peroxidation in planarian. Our results also indicate that GPX as well as GSH seem to be more sensitive biomarkers of oxidative stress compared with SOD and CAT.


Assuntos
Brometos/toxicidade , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Planárias/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/antagonistas & inibidores , Catalase/metabolismo , China , Glutationa/metabolismo , Glutationa Peroxidase/química , Glutationa Peroxidase/metabolismo , Proteínas de Helminto/agonistas , Proteínas de Helminto/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Concentração Osmolar , Planárias/isolamento & purificação , Planárias/metabolismo , Rios , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Fatores de Tempo
11.
Shi Yan Sheng Wu Xue Bao ; 37(4): 333-6, 2004 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-15511078

RESUMO

Using the Genomic DNA purification kit, the total DNA of the freshwater planarian was extracted and developed one single band through 0.8% agarose gel electrophoresis with OD260/OD280 between 1.5 and 2.2, which could satisfy the requirements of RAPD and PCR on DNA. With the extracted DNA template, we tested experimental conditions that might affect RAPD results including annealing temperature, concentrations of template DNA, primer, Mg2+ and dNTPs. Through comparision we found that it was necessary and important to optimize the experimental conditions for producing stable and repeatable RAPD results. The optimized reaction conditions of RAPD for freshwater planarian in 25 microl reaction volume were as follows: 20 ng template DNA, 37 degrees C annealing temperature, 0.2 micromol/L primer, 2.0 mmol/L Mg2+ and 200 micromol/L dNTPs.


Assuntos
Água Doce , Planárias/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Animais , China , Primers do DNA/genética , DNA de Helmintos/genética , Eletroforese em Gel de Ágar , Reação em Cadeia da Polimerase , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA