Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
J Anim Sci Biotechnol ; 15(1): 78, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755656

RESUMO

BACKGROUND: Comprehending the patterns of alteration in boar semen quality and identifying effective nutritional interventions are crucial for enhancing the productivity of commercial pig systems. This study aimed to examine the alteration in semen quality in boars, and assess the impact of protocatechuic acid (PCA) on semen quality during the phase of declining semen quality. METHODS: In Exp. 1, a total of 38 Pig Improvement Company (PIC) boars were selected and their semen quality data were recorded from the age of 9 to 37 months. In Exp. 2, 18 PIC boars (28 months old) were randomly assigned into three groups (n = 6) and fed a basal diet, a basal diet containing 500 or 1,000 mg/kg PCA, respectively. The experiment lasted for 12 weeks. RESULTS: The semen volume, concentration, and total number of spermatozoa in boars exhibited an increase from 9 to 19 months old and showed a significant linear decreased trend in 28, 24, and 22 months old. Sperm motility displayed an upward trajectory, reaching its peak at 20 months of age, and showed a significant linear decreased trend at 20 months old. Dietary supplementation of PCA demonstrated an effect to mitigate the decrease in semen volume, concentration of spermatozoa, total number of spermatozoa (P > 0.05), and significantly increased the sperm motility (P < 0.05). Moreover, supplementation of 1,000 mg/kg PCA significantly increased the sperm viability (P < 0.05). Analysis on cellular signaling pathways revealed that PCA restored serum testosterone levels and alleviated oxidative damage by upregulating the expression of HO-1, SOD2, and NQO1 in testicular stromal cells. Notably, PCA can enhance phosphorylation by selectively binding to AMP-activated protein kinase (AMPK) protein, thereby improving sperm mitochondrial function and augmenting sperm motility via PGC-1/Nrf1. CONCLUSIONS: These data elucidated the pattern of semen quality variation in boars within the age range of 9 to 37 months old, and PCA has the potential to be a natural antioxidant to enhance sperm quality through modulation of the AMPK/PGC-1/Nrf1 signaling pathway.

2.
Gut Microbes ; 16(1): 2340487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626129

RESUMO

Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1ß (IL-1ß) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Infantil , Prevotella , Humanos , Criança , Animais , Camundongos , Insulina , Ácidos e Sais Biliares/farmacologia , Glicemia , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
3.
Pharmacol Res ; 203: 107184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615874

RESUMO

Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.


Assuntos
Doenças Inflamatórias Intestinais , Linfócitos T Reguladores , Células Th17 , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Animais , Dieta
4.
Pharmacol Res ; 204: 107194, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663526

RESUMO

Antibiotic related intestinal injury in early life affects subsequent health and susceptibility. Here, we employed weaned piglets as a model to investigate the protective effects of baicalin against early-life antibiotic exposure-induced microbial dysbiosis. Piglets exposed to lincomycin showed a marked reduction in body weight (p < 0.05) and deterioration of jejunum intestinal morphology, alongside an increase in antibiotic-resistant bacteria such as Staphylococcus, Dolosicoccus, Escherichia-Shigella, and Raoultella. In contrast, baicalin treatment resulted in body weights, intestinal morphology, and microbial profiles that closely resembled those of the control group (p > 0.05), with a significant increase in norank_f_Muribaculaceae and Prevotellaceae_NK3B31_group colonization compared with lincomycin group (p < 0.05). Further analysis through fecal microbial transplantation into mice revealed that lincomycin exposure led to significant alterations in intestinal morphology and microbial composition, notably increasing harmful microbes and decreasing beneficial ones such as norank_Muribaculaceae and Akkermansia (p < 0.05). This shift was associated with an increase in harmful metabolites and disruption of the calcium signaling pathway gene expression. Conversely, baicalin supplementation not only counteracted these effects but also enhanced beneficial metabolites and regulated genes within the MAPK signaling pathway (MAP3K11, MAP4K2, MAPK7, MAPK13) and calcium channel proteins (ORA13, CACNA1S, CACNA1F and CACNG8), suggesting a mechanism through which baicalin mitigates antibiotic-induced intestinal and microbial disturbances. These findings highlight baicalin's potential as a plant extract-based intervention for preventing antibiotic-related intestinal injury and offer new targets for therapeutic strategies.

5.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38573228

RESUMO

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Assuntos
Dieta Hiperlipídica , Mitocôndrias , Resultado da Gravidez , Resveratrol , Útero , Animais , Resveratrol/farmacologia , Feminino , Gravidez , Camundongos , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Útero/metabolismo , Útero/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo
6.
Bioconjug Chem ; 35(4): 528-539, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38514970

RESUMO

Cancer which causes high mortality globally threatens public health seriously. There is an urgent need to develop tumor-specific near-infrared (NIR) imaging agents to achieve precise diagnosis and guide effective treatment. In recent years, imaging probes that respond to acidic environments such as endosomes, lysosomes, or acidic tumor microenvironments (TMEs) are being developed. However, because of their nonspecific internalization by both normal and tumor cells, resulting in a poor signal-to-noise ratio in diagnosis, these pH-sensitive probes fail to be applied to in vivo tumor imaging. To address this issue, a cholecystokinin-2 receptor (CCK2R)-targeted TME-sensitive NIR fluorescent probe R2SM was synthesized by coupling pH-sensitive heptamethine cyanine with a CCK2R ligand, minigastrin analogue 11 (MG11) for in vivo imaging, in which MG11 would target overexpressed CCK2Rs in gastrointestinal stromal tumors (GISTs). Cell uptake assay demonstrated that R2SM exhibited a high affinity for CCK2R, leading to receptor-mediated internalization and making probes finally accumulated in the lysosomes of tumor cells, which suggested in the tumor tissues, the probes were distributed in the extracellular acidic TME and intracellular lysosomes. With a pKa of 6.83, R2SM can be activated at the acidic TME (pH = 6.5-6.8) and lysosomes (pH = 4.5-5.0), exhibiting an apparent pH-dependent behavior and generating more intense fluorescence in these acidic environments. In vivo imaging showed that coupling of MG11 with a pH-sensitive NIR probe facilitated the accumulation of probe and enhanced the fluorescence in CCK2R-overexpressed HT-29 tumor cells. A high signal was observed in the tumor region within 0.5 h postinjection, indicating its potential application in intraoperative imaging. Fluorescence imaging of R2SM exhibited higher tumor-to-liver and tumor-to-kidney ratios (2.1:1 and 2.3:1, respectively), compared separately with the probes that are lipophilic, pH-insensitive, or MG11-free. In vitro and in vivo studies demonstrated that the synergistic effect of tumor targeting with pH sensitivity plays a vital role in the high signal-to-noise ratio of the NIR imaging probe. Moreover, different kinds of tumor-targeting vectors could be conjugated simultaneously with the NIR dye, which would further improve the receptor affinity and targeting efficiency.


Assuntos
Corantes Fluorescentes , Receptor de Colecistocinina B , Linhagem Celular Tumoral , Imagem Óptica
7.
Anal Bioanal Chem ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507042

RESUMO

Metrology is the science of measurement and its applications, whereas biometrology is the science of biological measurement and its applications. Biometrology aims to achieve accuracy and consistency of biological measurements by focusing on the development of metrological traceability, biological reference measurement procedures, and reference materials. Irreproducibility of biological and multi-omics research results from different laboratories, platforms, and analysis methods is hampering the translation of research into clinical uses and can often be attributed to the lack of biologists' attention to the general principles of metrology. In this paper, the progresses of biometrology including metrology on nucleic acid, protein, and cell measurements and its impacts on the improvement of reliability and comparability in biological research are reviewed. Challenges in obtaining more reliable biological and multi-omics measurements due to the lack of primary reference measurement procedures and new standards for biological reference materials faced by biometrology are discussed. In the future, in addition to establishing reliable reference measurement procedures, developing reference materials from single or multiple parameters to multi-omics scale should be emphasized. Thinking in way of biometrology is warranted for facilitating the translation of high-throughput omics research into clinical practices.

8.
J Sci Food Agric ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308576

RESUMO

BACKGROUND: Dietary fibers with varying physicochemical properties have different fermentation characteristics, which may differently impact host health. The present study aimed to determine the fermentation characteristics including gas production kinetics, short-chain fatty acids (SCFAs) production and microbial composition of different fibrous ingredients using in vitro fermentation by fecal microbiota. RESULTS: Sugar beet pule (SBP), wheat bran (WB), dried corn distillers grains with solubles (DDGS), rice bran (RB) and alfalfa meal (AM) were selected to fermentation in vitro for 36 h. The results showed that SBP had the greatest gas production. SBP had the highest in vitro dry matter fermentability (IVDMF) and production of acetate, propionate and total SCFAs, followed by WB, which were all greater than DDGS, AM and RB. The alpha-diversity was higher in the DDGS, AM and RB groups than in the WB and SBP groups. Differences in microbial community composition were observed among groups. The relative abundance of Treponema was highest in WB group. RB group showed lower Prevotella abundance than other groups but had higher Succinivibrio abundance. Interestingly, the Lactobacillus reached the highest abundances in the DDGS group. Correlation analysis indicated that the relative abundance of Treponema and Prevotella was positively associated with the gas production, IVDMF and SCFAs, whereas norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Lysinibacillus and Succinivibrio were the opposite. CONCLUSION: Collectively, WB and SBP were fermented rapidly by fecal microbiota compared to DDGS, AM and RB. Different fiber sources have different fiber compositions and fermentation properties that affect the microbial compositins and SCFAs production. © 2024 Society of Chemical Industry.

9.
Poult Sci ; 103(2): 103249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035475

RESUMO

Two experiments were conducted to establish the prediction equations for AME and TME of corn based on chemical composition and enzymatic hydrolysate gross energy (EHGE) in roosters. In experiment 1, eighty 32-wk-old Hy-line Brown roosters with an average body weight of 2.55 ± 0.21 kg were randomly assigned to 10 diet treatments in a completely randomized design to determine AME and TME by the force-feeding method. Each treatment had 8 replicates with 1 bird per replicate. The 10 test diets used in the experiment were formulated with corn (including 96.10%) as the sole source of energy. In experiment 2, the EHGE of 14 corn samples was measured by the computer-controlled simulated digestion system (CCSDS) with 5 replicates of each sample. The average AME and TME values of corn were 14.58 and 16.46 MJ/kg DM, respectively. The EHGE of 14 corn samples ranged from 14.66 to 15.89 (the mean was 15.24) MJ/kg DM. The best-fit equations for corn based on chemical composition were AME (MJ/kg DM) = 14.5504 + 0.1166 × ether extract (EE) + 0.5058 × Ash - 0.0957 × neutral detergent fiber (NDF) (R2 = 0.8194, residual standard deviation (RSD) = 0.0860, P < 0.01) and TME (MJ/kg DM) = 16.0625 + 0.1314 × EE + 0.4725 × Ash - 0.0872 × NDF (R2 = 0.7867, RSD = 0.0860, P < 0.01). The best-fit equations for corn based on EHGE were AME (MJ/kg DM) = 7.8883 + 0.4568 × EHGE (R2 = 0.8587, RSD = 0.0693, P < 0.01) and TME (MJ/kg DM) = 10.0099 + 0.4228 × EHGE (R2 = 0.8720, RSD = 0.0608, P < 0.01). The differences between determined and predicted values from equations established based on EHGE were lower than those observed from chemical composition equations. These results indicated that EHGE measured with CCSDS could predict the AME and TME of corn for roosters with high accuracy.


Assuntos
Digestão , Zea mays , Animais , Masculino , Zea mays/química , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Metabolismo Energético , Dieta/veterinária
10.
J Nutr Biochem ; 124: 109491, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865382

RESUMO

Weaning is one of the major factors that cause stress and intestinal infection in infants and in young animals due to an immature intestine and not fully developed immune functions. Pectin (PEC), a prebiotic polysaccharide, has attracted considerable attention in intestinal epithelial signaling and function via modulation of the microbial community. A total of 16 weaned piglets (21-d-old) were randomly assigned into two groups: control group and PEC group. Supplementation of 5% pectin improved intestinal mucosal barrier function by modulating the composition of the bile acid pool in piglets. Specifically, piglets in PEC group had less serum D-lactate content and alkaline phosphatase activity. In the ileum, dietary pectin increased the number of crypt PAS/AB-positive goblet cells and the mRNA expressions of MUC2, ZO-1, and Occludin. Piglets in PEC group displayed a decreased abundance of Enterococcus (2.71 vs. 65.92%), but the abundances of Lactobacillus (30.80 vs. 7.93%), Streptococcus (21.41 vs. 14.81%), and Clostridium_sensu_stricto_1 (28.34 vs. 0.01%) were increased. Elevated concentrations of bile acids especially hyocholic acid species (HCAs) including HCA, HDCA, and THDCA were also observed. Besides, correlation analysis revealed that dietary pectin supplementation may have beneficial effects through stimulation of the crosstalk between gut microbes and bile acid synthesis within the enterohepatic circulation. Thus, dietary pectin supplementation exhibited a further positive effect on the healthy growth and development of weaned piglets. These findings suggest pectin supplementation as the prebiotic is beneficial for gut health and improvement of weaned stress via regulating microbiota and bile acid metabolism.


Assuntos
Suplementos Nutricionais , Função da Barreira Intestinal , Humanos , Animais , Suínos , Suplementos Nutricionais/análise , Pectinas/farmacologia , Dieta , Ácidos e Sais Biliares , Desmame
11.
Front Cell Infect Microbiol ; 13: 1308484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116132

RESUMO

Introduction: Alginate oligosaccharide (AOS), as a natural non-toxic plant extract, has been paid more attention in recent years due to its strong antioxidant, anti-inflammatory, and even anti-cancer properties. However, the mechanism by which AOS affects animal reproductive performance is still unclear. Methods: The purpose of this study is to use multi-omics technology to analyze the effects of AOS in extending the service lifespan of aging boars. Results: The results showed that AOS can significantly improve the sperm motility (p < 0.05) and sperm validity rate (p < 0.001) of aging boars and significantly reduce the abnormal sperm rate (p < 0.01) by increasing the protein levels such as CatSper 8 and protein kinase A (PKA) for semen quality. At the same time, AOS significantly improved the testosterone content in the blood of boars (p < 0.01). AOS significantly improved fatty acids such as adrenic acid (p < 0.05) and antioxidants such as succinic acid (p < 0.05) in sperm metabolites, significantly reducing harmful substances such as dibutyl phthalate (p < 0.05), which has a negative effect on spermatogenesis. AOS can improve the composition of intestinal microbes, mainly increasing beneficial bacteria Enterobacter (p = 0.1262) and reducing harmful bacteria such as Streptococcus (p < 0.05), Prevotellaceae_UCG-001 (p < 0.05), and Prevotellaceae_NK3B31_group (p < 0.05). Meanwhile, short-chain fatty acids in feces such as acetic acid (p < 0.05) and butyric acid (p < 0.05) were significantly increased. Spearman correlation analysis showed that there was a close correlation among microorganisms, sperm metabolites, and sperm parameters. Discussion: Therefore, the data indicated that AOS improved the semen quality of older boars by improving the intestinal microbiota and sperm metabolome. AOS can be used as a feed additive to solve the problem of high elimination rate in large-scale boar studs.


Assuntos
Microbioma Gastrointestinal , Análise do Sêmen , Animais , Masculino , Envelhecimento , Alginatos/farmacologia , Longevidade , Sêmen/fisiologia , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Suínos
12.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38006392

RESUMO

The present experiment was conducted to determine the effect of bile acids (BAs) supplementation on growth performance, BAs profile, fecal microbiome, and serum metabolomics in growing-finishing pigs. A total of 60 pigs [Duroc × (Landrace × Yorkshire)] with an average body weight of 27.0 ±â€…1.5 kg were selected and allotted into one of 2 groups (castrated male to female ratio = 1:1), with 10 replicates per treatment and 3 pigs per replicate. The 2 treatments were the control group (control) and a porcine bile extract-supplemented group dosed at 0.5 g/kg feed (BA). After a 16-wk treatment, growth performance, BAs profiles in serum and feces, and fecal microbial composition were determined. An untargeted metabolomics approach using gas chromatography with a time-of-flight mass spectrometer was conducted to identify the metabolic pathways and associated metabolites in the serum of pigs. We found that BAs supplementation had no effect on the growth performance of the growing-finishing pig. However, it tended to increase the gain-to-feed ratio for the whole period (P = 0.07). BAs supplementation resulted in elevated serum concentrations of secondary bile acids, including hyodeoxycholic acid (HDCA), glycoursodeoxycholic acid, and tauro-hyodeoxycholic acid, as well as fecal concentration of HDCA (P < 0.05). Fecal microbiota analysis revealed no differences in alpha and beta diversity indices or the relative abundance of operational taxonomic units (OTUs) at both phylum and genus levels between groups. Metabolic pathway analysis revealed that the differential metabolites between control and BA groups are mainly involved in purine metabolism, ether lipid metabolism, glycerophospholipid metabolism, and amino sugar and nucleotide sugar metabolism, as well as primary bile acid biosynthesis. Our findings indicate that BAs supplementation tended to improve the feed efficiency, and significantly altered the BA profile in the serum and feces of growing-finished pigs, regardless of any changes in the gut microbial composition. The altered metabolic pathways could potentially play a vital role in improving the feed efficiency of growing-finished pigs with BAs supplementation.


Bile acids (BAs), known to exhibit a key role in emulsification and absorption of dietary fat in the intestinal lumen, have also become appreciated as important regulators of intestinal function, lipid and energy metabolism in humans and animals. This study investigated the effect of BAs supplementation on growth performance, BAs profile, fecal microbiome, and serum metabolomics in growing-finishing pigs. The results showed that BAs supplementation had few effects on pig growth performance and fecal microbiota, but modified serum and fecal BAs profile and serum metabolomics profile. The altered metabolic pathways could potentially play a vital role in improving the feed efficiency of growing-finished pigs with BAs supplementation.


Assuntos
Ácidos e Sais Biliares , Microbiota , Masculino , Feminino , Animais , Suínos , Dieta/veterinária , Suplementos Nutricionais/análise , Fezes/química , Ração Animal/análise
13.
Food Funct ; 14(16): 7705-7717, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37547959

RESUMO

During weaning, piglets are susceptible to intestinal injuries caused by a range of infections, which result in serious economic losses for pig producers. Caffeic acid (CA) is a plant-derived phenolic acid that exhibits potential as a dietary supplement for enhancing intestinal health. There is, however, limited information available about the potential benefits of CA supplementation on intestinal injury and growth performance in piglets. A 28-day study was conducted to examine the effectiveness of CA supplementation in protecting against intestinal injury induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) in piglets. Twenty-four piglets (7.43 ± 0.79 kg body weight; Duroc × Landrace × Large White; barrows) were randomly divided into 4 groups: the control group, the LPS group, the LPS + CA group, and the CA group. Piglets were administered with LPS or saline on d21 and d28 of the experiment. Supplementation with CA improved intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, as well as increasing the expression of Claudin-1 and ZO-1. Meanwhile, CA supplementation improved the systemic and colonic inflammation responses, oxidative stress, and apoptosis induced by LPS. CA supplementation improved the alpha diversity and structure of the intestinal microbiota by increasing the abundance of beneficial microbiota. Additionally, it was found that it improves metabolic disorders of colonic bile acids (BAs) and short-chain fatty acids (SCFAs) in LPS-challenged piglets, including an increase in primary BAs and isovalerate. In conclusion, CA supplementation could enhance intestinal integrity and barrier function by modifying intestinal microbiota and its metabolites, which could lead to a reduction in inflammatory responses and oxidative stress and ultimately enhanced growth performance in piglets.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Suínos , Animais , Lipopolissacarídeos/efeitos adversos , Suplementos Nutricionais/análise , Intestinos , Enteropatias/tratamento farmacológico , Enteropatias/veterinária , Enteropatias/induzido quimicamente , Desmame
14.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569498

RESUMO

Bile acids (BAs) are well known to facilitate the absorption of dietary fat and fat-soluble molecules. These unique steroids also function by binding to the ubiquitous cell membranes and nuclear receptors. As chemical signals in gut-liver axis, the presence of metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and even tumors have been reported to be closely related to abnormal levels of BAs in the blood and fecal metabolites of patients. Thus, the gut microbiota interacting with BAs and altering BA metabolism are critical in the pathogenesis of numerous chronic diseases. This review intends to summarize the mechanistic links between metabolic disorders and BAs in gut-liver axis, and such stage-specific BA perturbation patterns may provide clues for developing new auxiliary diagnostic means.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Biomarcadores/metabolismo
15.
Gut Microbes ; 15(1): 2238959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37505920

RESUMO

Gut microbiota-diet interaction has been identified as a key factor of metabolic associated fatty liver disease (MAFLD). Recent studies suggested that dietary polyphenols may protect against MAFLD by regulating gut microbiota; however, the underlying mechanisms remain elusive. We first investigated the effects of cyanidin 3-glucoside and its phenolic metabolites on high-fat diet induced MAFLD in C57BL/6J mice, and protocatechuic acid (PCA) showed a significant positive effect. Next, regulation of PCA on lipid metabolism and gut microbiota were explored by MAFLD mouse model and fecal microbiota transplantation (FMT) experiment. Dietary PCA reduced intraperitoneal and hepatic fat deposition with lower levels of transaminases (AST & ALT) and inflammatory cytokines (IL-1ß, IL-2, IL-6, TNF-α & MCP-1), but higher HDL-c/LDL-c ratio. Characterization of gut microbiota indicated that PCA decreased the Firmicutes/Bacteroidetes ratio mainly by reducing the relative abundance of genus Enterococcus, which was positively correlated with the levels of LDL-c, AST, ALT and most of the up-regulated hepatic lipids by lipidomics analysis. FMT experiments showed that Enterococcus faecalis caused hepatic inflammation, fat deposition and insulin resistance with decreased expression of carnitine palmitoyltransferase-1 alpha (CPT1α), which can be reversed by PCA through inhibiting Enterococcus faecalis. Transcriptomics analysis suggested that Enterococcus faecalis caused a significant decrease in the expression of fibroblast growth factor 1 (Fgf1), and PCA recovered the expression of Fgf1 with insulin-like growth factor binding protein 2 (Igfbp2), insulin receptor substrate 1 (Irs1) and insulin receptor substrate 2 (Irs2). These results demonstrated that high proportion of gut Enterococcus faecalis accelerates MAFLD with decreased expression of CPT1α and Fgf1, which can be prevented by dietary supplementation of PCA.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , LDL-Colesterol , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
16.
J Anim Sci Biotechnol ; 14(1): 75, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37264441

RESUMO

BACKGROUND: Fertility declines in high-parity sows. This study investigated whether parity-dependent declines in embryonic survival and reproductive performance could be restored by dietary coenzyme Q10 (CoQ10) supplementation. METHODS: Two experiments were performed. In Exp. 1, 30 young sows that had completed their 2nd parity and 30 high-parity sows that had completed their 10th parity, were fed either a control diet (CON) or a CON diet supplemented with 1 g/kg CoQ10 (+ CoQ10) from mating until slaughter at day 28 of gestation. In Exp. 2, a total of 314 post-weaning sows with two to nine parities were fed the CON or + CoQ10 diets from mating throughout gestation. RESULTS: In Exp. 1, both young and high-parity sows had a similar number of corpora lutea, but high-parity sows had lower plasma CoQ10 concentrations, down-regulated genes involved with de novo CoQ10 synthesis in the endometrium tissues, and greater levels of oxidative stress markers in plasma and endometrium tissues. High-parity sows had fewer total embryos and alive embryos, lower embryonic survival, and greater embryo mortality than young sows. Dietary CoQ10 supplementation increased the number of live embryos and the embryonic survival rate to levels similar to those of young sows, as well as lowering the levels of oxidative stress markers. In Exp. 2, sows showed a parity-dependent decline in plasma CoQ10 levels, and sows with more than four parities showed a progressive decline in the number of total births, live births, and piglets born effective. Dietary supplementation with CoQ10 increased the number of total births, live births, and born effective, and decreased the intra-litter covariation coefficients and the percentage of sows requiring farrowing assistance during parturition. CONCLUSIONS: Dietary CoQ10 supplementation can improve the embryonic survival and reproductive performance of gestating sows with high parity, probably by improving the development of uterine function.

17.
Anim Biotechnol ; 34(8): 3757-3764, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37382421

RESUMO

As an important factor secreted by skeletal muscle, myonectin can regulate lipid metabolism and energy metabolism, but its role in the utilization of peripheral free fatty acids (FFAs) by porcine intramuscular fat cells remains to be further investigated. In this study, porcine intramuscular adipocytes were treated with recombinant myonectin and palmitic acid (PA), either alone or in combination, and then were examined for their uptake of exogenous FFAs, intracellular lipid synthesis and catabolism, and mitochondrial oxidation of fatty acids. The results showed that myonectin decreased the area of lipid droplets in intramuscular adipocytes (p < 0.05) and significantly increased (p < 0.05) the expression levels of hormone-sensitive lipase (HSL) and lipoprotein lipase (LPL). Moreover, myonectin can up-regulate the expression of p38 mitogen-activated protein kinase (p38 MAPK). Myonectin significantly promoted the uptake of peripheral FFAs (p < 0.01), improved (p < 0.05) the expression of fatty transport protein 1 (FATP1) and fatty acid binding protein 4 (FABP4) in intramuscular adipocytes. Myonectin also significantly increased (p < 0.05) the expression levels of fatty acid oxidation markers: transcription factor (TFAM), uncoupling protein-2 (UCP2) and oxidative respiratory chain marker protein complex I (NADH-CoQ) in mitochondria of intramuscular adipocytes. In summary, myonectin promoted the absorption, transport, and oxidative metabolism of exogenous FFAs in mitochondria, thereby inhibiting lipid deposition in porcine intramuscular adipocytes.


Assuntos
Ácidos Graxos não Esterificados , Regulação da Expressão Gênica , Suínos , Animais , Ácidos Graxos não Esterificados/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Adipócitos/metabolismo , Diferenciação Celular , Músculo Esquelético/metabolismo , Ácidos Graxos/farmacologia
18.
Animals (Basel) ; 13(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174509

RESUMO

Animals with intrauterine growth retardation (IUGR) usually undergo injured postnatal growth and development during the early period after birth. Equol (Eq), an isoflavan produced by gut bacteria in response to daidzein intake, has various health benefits. Therefore, the objective of this study was to evaluate whether Eq supplementation can influence the growth performance, redox status, intestinal health and skeletal muscle development of weanling piglets with IUGR. A total of 10 normal-birth-weight (NBW) newborn female piglets and 20 newborn female piglets with IUGR were selected. After weaning at the age of 21 d, 10 NBW piglets and 10 IUGR piglets were allocated to the NBW group and IUGR group, respectively, and offered a basal diet. The other 10 IUGR piglets were allocated to the IUGR + Eq group and offered a basal diet with 50 mg of Eq per kg of diet. The whole trial lasted for 21 d. At the end of the feeding trial, all piglets were sacrificed for the collection of serum, intestinal tissues and skeletal muscles. Supplementation with Eq increased the average daily gain (ADG), average daily feed intake (ADFI), duodenal villus height to crypt depth ratio (V/C), jejunal villus height and V/C, but reduced the duodenal crypt depth in neonatal piglets with IUGR. Meanwhile, Eq supplementation elevated the activities of superoxide dismutase (SOD) and catalase (CAT) in the serum and duodenum and the activity of SOD in the jejunum, but lowered malondialdehyde (MDA) content in the serum, jejunum and ileum of piglets with IUGR. In addition, supplementation with Eq reduced diamine oxidase (DAO) activity and the levels of D-lactate and endotoxin in serum, and the tumor necrosis factor-α (TNF-α) level in jejunum and ileum, whereas the concentration of serum immunoglobulin G (IgG) and the mRNA levels of intestinal barrier-related markers in jejunum and ileum of IUGR piglets were increased. Furthermore, supplementation with Eq elevated the percentage of fast-fibers and was accompanied with higher mRNA expression of myosin heavy chain IIb (MyHC IIb) and lower mRNA levels in MyHC I in the longissimus thoracis (LT) muscle of IUGR piglets. In summary, Eq supplementation can promote antioxidant capacity, maintain intestinal health and facilitate skeletal muscle development, thus resulting in the higher growth performance of IUGR piglets.

19.
J Anim Sci Biotechnol ; 14(1): 38, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882874

RESUMO

BACKGROUND: Pectin is a heteropolysaccharide that acts as an intestinal immunomodulator, promoting intestinal development and regulating intestinal flora in the gut. However, the relevant mechanisms remain obscure. In this study, pigs were fed a corn-soybean meal-based diet supplemented with either 5% microcrystalline cellulose (MCC) or 5% pectin for 3 weeks, to investigate the metabolites and anti-inflammatory properties of the jejunum. RESULT: The results showed that dietary pectin supplementation improved intestinal integrity (Claudin-1, Occludin) and inflammatory response [interleukin (IL)-10], and the expression of proinflammatory cytokines (IL-1ß, IL-6, IL-8, TNF-α) was down-regulated in the jejunum. Moreover, pectin supplementation altered the jejunal microbiome and tryptophan-related metabolites in piglets. Pectin specifically increased the abundance of Lactococcus, Enterococcus, and the microbiota-derived metabolites (skatole (ST), 3-indoleacetic acid (IAA), 3-indolepropionic acid (IPA), 5-hydroxyindole-3-acetic acid (HIAA), and tryptamine (Tpm)), which activated the aryl hydrocarbon receptor (AhR) pathway. AhR activation modulates IL-22 and its downstream pathways. Correlation analysis revealed the potential relationship between metabolites and intestinal morphology, intestinal gene expression, and cytokine levels. CONCLUSION: In conclusion, these results indicated that pectin inhibits the inflammatory response by enhancing the AhR-IL22-signal transducer and activator of transcription 3 signaling pathway, which is activated through tryptophan metabolites.

20.
Poult Sci ; 102(5): 102585, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913758

RESUMO

This study aimed to evaluate the individual and combined effects of chemically protected sodium butyrate (CSB) and xylo-oligosaccharide (XOS) on performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers. A total of 280 one-day-old Arbor Acres broilers were randomly distributed into 5 treatments: basal diet (CON), basal diet supplemented with 100 mg/kg aureomycin and 8 mg/kg enramycin (ABX), 1000 mg/kg CSB (CSB), 100 mg/kg XOS (XOS), and mixture of 1000 mg/kg CSB and 100 mg/kg XOS (MIX), respectively. On d 21, ABX, CSB, and MIX decreased feed conversion ratio compared with CON (CON: ABX: CSB: MIX = 1.29: 1.22: 1.22: 1.22), whereas body weight of CSB and MIX was increased by 6.00% and 7.93%, and average daily gain was increased by 6.62% and 8.67% at 1-21 d, respectively (P < 0.05). The main effect analysis showed that both CSB and XOS treatments increased ileal villus height and villus height to crypt depth ratio (VCR) (P < 0.05). Moreover, broilers in ABX showed lower 21.39% ileal crypt depth and higher 31.43% VCR than those in CON (P < 0.05). Dietary CSB and XOS were added individually or collectively increased total antioxidant capacity and superoxide dismutase, and anti-inflammatory cytokines interleukin-10 and transforming growth factor-ß, whereas decreased malondialdehyde, and proinflammatory cytokines IL-6 and tumor necrosis factor-α content in serum (P < 0.05). Meanwhile, MIX showed the best effect of antioxidant and anti-inflammatory capacity among the 5 groups (P < 0.05). There was an interaction between CSB and XOS treatments on increasing cecal acetic acid, propionic acid, butyric acid and total short-chain fatty acid (SCFA) (P < 0.05), and the one-way ANOVA showed that propionic acid in CSB was 1.54 times that of CON, whereas butyric acid and total SCFAs in XOS were 1.22 times and 1.28 times that of CON, respectively (P < 0.05). Furthermore, dietary combination of CSB and XOS changed phyla Firmicutes and Bacteroidota, and increased genera Romboutsia and Bacteroides (P < 0.05). In conclusion, dietary CSB and XOS improved growth performance of broilers, and the combined addition of them had the best effect on anti-inflammatory and antioxidant capacity, and intestinal homeostasis of broilers in current study, indicating that it may be a potential natural alternative to antibiotics.


Assuntos
Antioxidantes , Microbiota , Animais , Ácido Butírico/farmacologia , Galinhas , Suplementos Nutricionais/análise , Dieta/veterinária , Oligossacarídeos/farmacologia , Ração Animal/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA