Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 340, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580722

RESUMO

Despite the rapid advances in sequencing technology, limited genomic resources are currently available for phytophagous spider mites, which include many important agricultural pests. One of these pests is Tetranychus piercei (McGregor), a serious banana pest in East Asia exhibiting remarkable tolerance to high temperature. In this study, we assembled a high-quality genome of T. piercei using a combination of PacBio long reads and Illumina short reads sequencing. With the assistance of chromatin conformation capture technology, 99.9% of the contigs were anchored into three pseudochromosomes with a total size of 86.02 Mb. Repetitive elements, accounting for 14.16% of this genome (12.20 Mb), are predominantly composed of long-terminal repeats (30.7%). By combining evidence of ab initio prediction, transcripts, and homologous proteins, we annotated 11,881 protein-coding genes. Both the genome and proteins have high BUSCO completeness scores (>94%). This high-quality genome, along with reliable annotation, provides a valuable resource for investigating the high-temperature tolerance of this species and exploring the genomic basis that underlies the host range evolution of spider mites.


Assuntos
Tetranychidae , Animais , Cromossomos , Genoma , Genômica , Anotação de Sequência Molecular , Filogenia , Sequências Repetitivas de Ácido Nucleico , Tetranychidae/genética
2.
Insect Sci ; 30(5): 1208-1228, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37279769

RESUMO

The phytophagous mite Tetranychus truncatus is a serious pest in East Asia but has a relatively narrower host range than the pest mite Tetranychus urticae, which can feed on over 1200 plant species. Here, we generated a high-quality chromosomal level genome of T. truncatus and compared it with that of T. urticae, with an emphasis on the genes related to detoxification and chemoreception, to explore the genomic basis underlying the evolution of host range. We also conducted population genetics analyses (in 86 females from 10 populations) and host transfer experiments (in 4 populations) to investigate transcription changes following transfer to a low-quality host (Solanum melongena, eggplant), and we established possible connections between fitness on eggplant and genes related to detoxification and chemoreception. We found that T. truncatus has fewer genes related to detoxification, transport, and chemoreception than T. urticae, with a particularly strong reduction in gustatory receptor (GR) genes. We also found widespread transcriptional variation among T. truncatus populations, which varied in fitness on eggplant. We characterized selection on detoxification-related genes through ω values and found a negative correlation between expression levels and ω values. Based on the transcription results, as well as the fitness and genetic differences among populations, we identified genes potentially involved in adaptation to eggplant in T. truncatus. Our work provides a genomic resource for this pest mite and new insights into mechanisms underlying the adaptation of herbivorous mites to host plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA