Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Mitochondrial DNA B Resour ; 9(4): 428-431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586506

RESUMO

Plumbago zeylanica L. 1753 is a medicinally-important herb in family Plumbaginaceae. In this study, we assembled and reported the complete chloroplast genome of P. zeylanica. The plastome of P. zeylanica was 169,178 bp, including a large single-copy region of 92,135 bp, a small single-copy region (SSC) of 13,455 bp and a pair of inverted repeat regions (IRs) of 31,794 bp. It contained 124 genes, including 79 protein-coding genes, 37 tRNA genes and eight rRNA genes. Phylogenetic analysis showed that P. zeylanica formed a close relationship with P. auriculata in Plumbago. The first complete chloroplast genome report of P. zeylanica providing an opportunity to explore the genetic diversity, and would be also helpful in the species identification and conservation.

2.
Comput Med Imaging Graph ; 114: 102370, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38513396

RESUMO

Ultrasound image segmentation is a challenging task due to the complexity of lesion types, fuzzy boundaries, and low-contrast images along with the presence of noises and artifacts. To address these issues, we propose an end-to-end multi-scale feature extraction and fusion network (MEF-UNet) for the automatic segmentation of ultrasound images. Specifically, we first design a selective feature extraction encoder, including detail extraction stage and structure extraction stage, to precisely capture the edge details and overall shape features of the lesions. In order to enhance the representation capacity of contextual information, we develop a context information storage module in the skip-connection section, responsible for integrating information from adjacent two-layer feature maps. In addition, we design a multi-scale feature fusion module in the decoder section to merge feature maps with different scales. Experimental results indicate that our MEF-UNet can significantly improve the segmentation results in both quantitative analysis and visual effects.


Assuntos
Algoritmos , Artefatos , Ultrassonografia , Processamento de Imagem Assistida por Computador
3.
Curr Med Chem ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38357947

RESUMO

BACKGROUND: Pyroptosis, a cell death process triggered by chemotherapy drugs, has emerged as a highly promising mechanism for combating tumors in recent years. As the lead of new drugs, natural products play an important role in the discovery of anticancer drugs. Compared to other natural products, the medicine food homologous natural products (MFHNP) exhibit a superior safety profile. Among a series of MFHNP molecular skeletons, this study found that only benzylideneacetophenone (1) could induce cancer cell pyroptosis. However, the anti-cancer activity of 1 remains to be improved. AIMS: This study aimed to find a pyroptosis inducer with highly effective antitumor activity by modifying the chalcone structure. METHODS: To examine the effect of the Michael receptor in compound 1 on the induction of pyroptosis, several analogs were synthesized by modifying the Michael acceptor. Subsequently, the anticancer activity was tested by MTT assay, and morphological indications of pyroptosis were observed in human lung carcinoma NCI-H460 and human ovarian cancer CP-70 cell lines. Furthermore, to improve the activity of the chalcone skeleton, the anticancer group 3,4,5- trimethoxyphenyl was incorporated into the phenyl ring. Subsequently, compounds 2-22 were designed, synthesized, and screened in human lung cancer cells (NCI-H460, H1975, and A549). Additionally, a quantitative structure-activity relationship (QSAR) model was established using the eXtreme Gradient Boosting (XGBoost) machine learning library to identify the pharmacophore. Furthermore, both in vitro and in vivo experiments were conducted to investigate the molecular mechanisms of pyroptosis induced by the active compound. RESULTS: α, ß-unsaturated ketone was the functional group of the chalcone skeleton and played a pivotal role in inducing cancer cell pyroptosis. QSAR models showed that the regression coefficients (R2) were 0.992 (A549 cells), 0.990 (NCI-H460 cells), and 0.998 (H1975 cells). Among these compounds, compound 7 was selected to be the active compound. Moreover, compound 7 was found to induce pyroptosis in lung cancer cells by upregulating the expression of CHOP by increasing the ROS level. Furthermore, it effectively suppressed the growth of lung cancer xenograft tumors. CONCLUSION: Compound 7 exhibits antineoplastic activity by regulating the ROS/ER stress/pyroptosis axis and is a kind of promising pyroptosis inducer.

4.
Eur J Pharmacol ; 964: 176226, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128868

RESUMO

Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.


Assuntos
Doença de Alzheimer , Ácido Oleanólico/análogos & derivados , Saponinas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteômica/métodos , Camundongos Transgênicos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
5.
Sci Rep ; 13(1): 21597, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062236

RESUMO

Breast ultrasound segmentation remains challenging because of the blurred boundaries, irregular shapes, and the presence of shadowing and speckle noise. The majority of approaches stack convolutional layers to extract advanced semantic information, which makes it difficult to handle multiscale issues. To address those issues, we propose a three-path U-structure network (TPUNet) that consists of a three-path encoder and an attention-based feature fusion block (AFF Block). Specifically, instead of simply stacking convolutional layers, we design a three-path encoder to capture multiscale features through three independent encoding paths. Additionally, we design an attention-based feature fusion block to weight and fuse feature maps in spatial and channel dimensions. The AFF Block encourages different paths to compete with each other in order to synthesize more salient feature maps. We also investigate a hybrid loss function for reducing false negative regions and refining the boundary segmentation, as well as the deep supervision to guide different paths to capture the effective features under the corresponding receptive field sizes. According to experimental findings, our proposed TPUNet achieves more excellent results in terms of quantitative analysis and visual quality than other rival approaches.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Semântica , Ultrassonografia Mamária , Neoplasias da Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
6.
MedComm (2020) ; 4(5): e380, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37752942

RESUMO

Genetic heterogeneity poses a challenge to research and clinical translation of autism spectrum disorder (ASD). In this study, we conducted a plasma proteomic and metabolomic study of children with ASD with and without risk genes (de novo mutation) and controls to explore the impact of genetic heterogeneity on the search for biomarkers for ASD. In terms of the proteomic and metabolomic profiles, the groups of children with ASD carrying and those not carrying de novo mutation tended to cluster and overlap, and integrating them yielded differentially expressed proteins and differential metabolites that effectively distinguished ASD from controls. The mechanisms associated with them focus on several common and previously reported mechanisms. Proteomics results highlight the role of complement, inflammation and immunity, and cell adhesion. The main pathways of metabolic perturbations include amino acid, vitamin, glycerophospholipid, tryptophan, and glutamates metabolic pathways and solute carriers-related pathways. Integrating the two omics analyses revealed that L-glutamic acid and malate dehydrogenase may play key roles in the pathogenesis of ASD. These results suggest that children with ASD may have important underlying common mechanisms. They are not only potential therapeutic targets for ASD but also important contributors to the study of biomarkers for the disease.

7.
Mol Neurobiol ; 60(12): 7309-7328, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37553545

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative disease in older people. Despite some consensus on pathogenesis of AD established by previous researches, further elucidation is still required for better understanding. This study analyzed the eye tissues of 2- and 6-month-old triple transgenic AD (3 × Tg-AD) male mice and age-sex-matched wild-type (WT) mice using a targeted metabolomics approach. Compared with WT mice, 20 and 44 differential metabolites were identified in 2- and 6-month-old AD mice, respectively. They were associated with purine metabolism, pantothenate and CoA biosynthesis, pyruvate metabolism, lysine degradation, glycolysis/gluconeogenesis, and pyrimidine metabolism pathways. Among them, 8 metabolites presented differences in both the two groups, and 5 of them showed constant trend of change. The results indicated that the eye tissues of 3 × Tg-AD mice underwent changes in the early stages of the disease, with changes in metabolites observed at 2 months of age and more pronounced at 6 months of age, which is consistent with our previous studies on hippocampal targeted metabolomics in 3 × Tg-AD mice. Therefore, a joint analysis of data from this study and previous hippocampal study was performed, and the differential metabolites and their associated mechanisms were similar in eye and hippocampal tissues, but with tissue specificity.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Camundongos , Masculino , Animais , Idoso , Lactente , Camundongos Transgênicos , Metabolômica , Gluconeogênese
8.
Commun Biol ; 6(1): 706, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429977

RESUMO

Glasshouse plants are species that trap warmth via specialized morphology and physiology, mimicking a human glasshouse. In the Himalayan alpine region, the highly specialized glasshouse morphology has independently evolved in distinct lineages to adapt to intensive UV radiation and low temperature. Here we demonstrate that the glasshouse structure - specialized cauline leaves - is highly effective in absorbing UV light but transmitting visible and infrared light, creating an optimal microclimate for the development of reproductive organs. We reveal that this glasshouse syndrome has evolved at least three times independently in the rhubarb genus Rheum. We report the genome sequence of the flagship glasshouse plant Rheum nobile and identify key genetic network modules in association with the morphological transition to specialized glasshouse leaves, including active secondary cell wall biogenesis, upregulated cuticular cutin biosynthesis, and suppression of photosynthesis and terpenoid biosynthesis. The distinct cell wall organization and cuticle development might be important for the specialized optical property of glasshouse leaves. We also find that the expansion of LTRs has likely played an important role in noble rhubarb adaptation to high elevation environments. Our study will enable additional comparative analyses to identify the genetic basis underlying the convergent occurrence of glasshouse syndrome.


Assuntos
Rheum , Humanos , Rheum/genética , Redes Reguladoras de Genes , Aclimatação , Temperatura Baixa , Raios Infravermelhos
9.
Vaccine ; 41(38): 5562-5571, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37516573

RESUMO

BACKGROUND: Vaccines are urgently required to control Staphylococcus aureus hospital and community infections and reduce the use of antibiotics. Here, we report the safety and immunogenicity of a recombinant five-antigen Staphylococcus aureus vaccine (rFSAV) in patients undergoing elective surgery for closed fractures. METHODS: A randomized, double-blind, placebo-controlled, multicenter phase 2 clinical trial was carried out in 10 clinical research centers in China. Patients undergoing elective surgery for closed fractures, aged 18-70 years, were randomly allocated at a ratio of 1:1 to receive the rFSAV or placebo at a regimen of two doses on day 0 and another dose on day 7. All participants and investigators remained blinded during the study period. The safety endpoint was the incidence of adverse events within 180 days. The immunogenicity endpoints included the level of specific antibodies to five antigens after vaccination, as well as opsonophagocytic antibodies. RESULTS: A total of 348 eligible participants were randomized to the rFSAV (n = 174) and placebo (n = 174) groups. No grade 3 local adverse events occurred. There was no significant difference in the incidence of overall systemic adverse events between the experimental (40.24 %) and control groups (33.72 %) within 180 days after the first immunization. The antigen-specific binding antibodies started to increase at days 7 and reached their peaks at 10-14 days after the first immunization. The rapid and potent opsonophagocytic antibodies were also substantially above the background levels. CONCLUSIONS: rFSAV is safe and well-tolerated in patients undergoing elective surgery for closed fractures. It elicited rapid and robust specific humoral immune responses using the perioperative immunization procedure. These results provide evidence for further clinical trials to confirm the vaccine efficacy. China's Drug Clinical Trials Registration and Information Publicity Platform registration number: CTR20181788. WHO International Clinical Trial Registry Platform identifier: ChiCTR2200066259.


Assuntos
Fraturas Fechadas , Staphylococcus aureus , Humanos , Fraturas Fechadas/induzido quimicamente , Vacinas Sintéticas , Imunização , Vacinação/métodos , Anticorpos , Método Duplo-Cego , Imunogenicidade da Vacina , Anticorpos Antivirais
10.
ACS Chem Neurosci ; 14(12): 2302-2319, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37272887

RESUMO

Arsenic (As) is a toxic element, and long-term exposure to As can cause neurotoxicity. The bioactive natural compound Dictyophora polysaccharide (DIP) from edible plants has been reported to reduce the toxicity of As. In this study, As poisoning was simulated by feeding As-containing feed, followed by proteomic analysis after one month of DIP treatment. The proteomic analysis showed that 145, 276, and 97 proteins were differentially expressed between the As-treated rats and control rats (As/Ctrl group), DIP-treated + As-treated and As-treated rats (DIP + As/As group), and DIP + As and control rats (DIP + As/Ctrl group), respectively. The differentially expressed proteins (DEPs) in the As/Ctrl and DIP + As/Ctrl groups were mainly related to apoptosis, synapses, energy metabolism, nervous system development, and mitochondria. After DIP treatment, the expression of the dysregulated proteins in the As/Ctrl group was restored or reversed, and 12 of them were reversed proteins. These results suggest that energy metabolism disorder, apoptosis, mitochondrial dysfunction, nervous system development injury, synaptic dysfunction, and oxidative stress may be the key pathological mechanisms of As-induced nerve injury in rats. DIP can restore or reverse the expression of related proteins, which may be the main mechanism of its intervention in As poisoning.


Assuntos
Arsênio , Basidiomycota , Ratos , Animais , Arsênio/toxicidade , Proteômica , Polissacarídeos/farmacologia , Estresse Oxidativo , Córtex Cerebral
11.
Neurosci Bull ; 39(11): 1623-1637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37031449

RESUMO

Autism spectrum disorder (ASD) is one of the common neurodevelopmental disorders in children. Its etiology and pathogenesis are poorly understood. Previous studies have suggested potential changes in the complement and coagulation pathways in individuals with ASD. In this study, using multiple reactions monitoring proteomic technology, 16 of the 33 proteins involved in this pathway were identified as differentially-expressed proteins in plasma between children with ASD and controls. Among them, CFHR3, C4BPB, C4BPA, CFH, C9, SERPIND1, C8A, F9, and F11 were found to be altered in the plasma of children with ASD for the first time. SERPIND1 expression was positively correlated with the CARS score. Using the machine learning method, we obtained a panel composed of 12 differentially-expressed proteins with diagnostic potential for ASD. We also reviewed the proteins changed in this pathway in the brain and blood of patients with ASD. The complement and coagulation pathways may be activated in the peripheral blood of children with ASD and play a key role in the pathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/metabolismo , Proteômica , Encéfalo/metabolismo
12.
Placenta ; 137: 1-13, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37054625

RESUMO

INTRODUCTION: Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the second and third trimesters. The disease's etiology and diagnostic criteria are currently unknown. Based on a sequence window to obtain all theoretical fragment ions (SWATH) proteomic approach, this study sought to identify potential proteins in placental tissue that may be involved in the pathogenesis of ICP and adverse fetal pregnancy outcomes. METHODS: The postpartum placental tissue of pregnant women with ICP were chosen as the case group (ICP group) (subdivided into mild ICP group (MICP group) and severe ICP group (SICP group)), and healthy pregnant women were chosen as the control group (CTR). The hematoxylin-eosin (HE) staining was used to observe the histologic changes of placenta. The SWATH analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS) was used to screen the differentially expressed proteins (DEPs) in ICP and CTR groups, and bioinformatics analysis was used to find out the biological process of these differential proteins. RESULTS: Proteomic studies showed there were 126 DEPs from pregnant women with ICP and healthy pregnant women. Most of the identified proteins were functionally related to humoral immune response, cell response to lipopolysaccharide, antioxidant activity and heme metabolism. A subsequent examination of placentas from patients with mild and severe ICP revealed 48 proteins that were differentially expressed. Through death domain receptors and fibrinogen complexes, these DEPs primarily regulate extrinsic apoptotic signaling pathways, blood coagulation, and fibrin clot formation. The differential expressions of HBD, HPX, PDE3A, and PRG4 were down-regulated by Western blot analysis, which was consistent with proteomics. DISCUSSION: This preliminary study helps us to understand the changes in the placental proteome of ICP patients, and provides new insights into the pathophysiology of ICP.


Assuntos
Colestase Intra-Hepática , Complicações na Gravidez , Gravidez , Feminino , Humanos , Placenta/metabolismo , Proteômica , Complicações na Gravidez/metabolismo , Resultado da Gravidez , Colestase Intra-Hepática/metabolismo
13.
iScience ; 26(3): 106159, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36895650

RESUMO

Circaeaster agrestis and Kingdonia uniflora are sister species that reproduce sexually and mainly asexually respectively, providing a good system for comparative genome evolution between taxa with different reproductive models. Comparative genome analyses revealed the two species have similar genome size, but C. agrestis encodes many more genes. The gene families specific to C. agrestis show significant enrichment of genes associated with defense response, while those gene families specific to K. uniflora are enriched in genes regulating root system development. Collinearity analyses revealed C. agrestis experienced two rounds of whole-genome duplication. Fst outlier test across 25 C. agrestis populations uncovered a close inter-relationship between abiotic stress and genetic variability. Genetic feature comparisons showed K. uniflora presents much higher genome heterozygosity, transposable element load, linkage disequilibrium degree, and πN/πS ratio. This study provides new insights into understanding the genetic differentiation and adaptation within ancient lineages characterized by multiple reproductive models.

14.
J Integr Plant Biol ; 65(7): 1620-1635, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36960823

RESUMO

Evolutionary convergence is one of the most striking examples of adaptation driven by natural selection. However, genomic evidence for convergent adaptation to extreme environments remains scarce. Here, we assembled reference genomes of two alpine plants, Saussurea obvallata (Asteraceae) and Rheum alexandrae (Polygonaceae), with 37,938 and 61,463 annotated protein-coding genes. By integrating an additional five alpine genomes, we elucidated genomic convergence underlying high-altitude adaptation in alpine plants. Our results detected convergent contractions of disease-resistance genes in alpine genomes, which might be an energy-saving strategy for surviving in hostile environments with only a few pathogens present. We identified signatures of positive selection on a set of genes involved in reproduction and respiration (e.g., MMD1, NBS1, and HPR), and revealed signatures of molecular convergence on genes involved in self-incompatibility, cell wall modification, DNA repair and stress resistance, which may underlie adaptation to extreme cold, high ultraviolet radiation and hypoxia environments. Incorporating transcriptomic data, we further demonstrated that genes associated with cuticular wax and flavonoid biosynthetic pathways exhibit higher expression levels in leafy bracts, shedding light on the genetic mechanisms of the adaptive "greenhouse" morphology. Our integrative data provide novel insights into convergent evolution at a high-taxonomic level, aiding in a deep understanding of genetic adaptation to complex environments.


Assuntos
Altitude , Raios Ultravioleta , Adaptação Fisiológica/genética , Perfilação da Expressão Gênica , Plantas , Genômica , Seleção Genética
15.
J Proteomics ; 278: 104872, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36898611

RESUMO

Autism spectrum disorder (ASD) is a complex neurological developmental disorder in children, and is associated with social isolation and restricted interests. The etiology of this disorder is still unknown. There is neither any confirmed laboratory test nor any effective therapeutic strategy to diagnose or cure it. We performed data independent acquisition (DIA) and multiple reaction monitoring (MRM) analysis of plasma from children with ASD and controls. The result showed that 45 differentially expressed proteins (DEPs) were identified between autistic subjects and controls. Among these, only one DEP was down-regulated in ASD; other DEPs were up-regulated in ASD children's plasma. These proteins are found associated with complement and coagulation cascades, vitamin digestion and absorption, cholesterol metabolism, platelet degranulation, selenium micronutrient network, extracellular matrix organization and inflammatory pathway, which have been reported to be related to ASD. After MRM verification, five key proteins in complement pathway (PLG, SERPINC1, and A2M) and inflammatory pathway (CD5L, ATRN, SERPINC1, and A2M) were confirmed to be significantly up-regulated in ASD group. Through the screening of machine learning model and MRM verification, we found that two proteins (biotinidase and carbonic anhydrase 1) can be used as early diagnostic markers of ASD (AUC = 0.8, p = 0.0001). SIGNIFICANCE: ASD is the fastest growing neurodevelopmental disorder in the world and has become a major public health problem worldwide. Its prevalence has been steadily increasing, with a global prevalence rate of 1%. Early diagnosis and intervention can achieve better prognosis. In this study, data independent acquisition (DIA) and multiple reaction monitoring (MRM) analysis was applied to analyze the plasma proteome of ASD patients (31 (±5) months old), and 378 proteins were quantified. 45 differentially expressed proteins (DEPs) were identified between the ASD group and the control group. They mainly were associated with platelet degranulation, ECM proteoglycar, complement and coagulation cascades, selenium micronutrient network, regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth factor binding proteins (IGFBPs), cholesterol metabolism, vitamin metabolism, and inflammatory pathway. Through the integrated machine learning methods and the MRM verification of independent samples, it is considered that biotinidase and carbon anhydrase 1 have the potential to become biomarkers for the early diagnosis of ASD. These results complement proteomics database of the ASD patients, broaden our understanding of ASD, and provide a panel of biomarkers for the early diagnosis of ASD.


Assuntos
Transtorno do Espectro Autista , Selênio , Criança , Humanos , Lactente , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/metabolismo , Proteômica , Biotinidase , Biomarcadores/metabolismo , Vitaminas , Colesterol
16.
RSC Adv ; 13(4): 2672-2679, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741144

RESUMO

In exploring the anode materials for high efficiency Li-ion batteries, it has been found that the electrochemical performance of Si can be enhanced via alloying with Ge. In the present work, we modified the Al-Si-Ge eutectic ribbons as the precursor by adding a trace of Sr to the alloy. The SiGe particles obtained by dealloying the Al-Si-Ge eutectic precursor have a porous coral-like nano-architecture with numerous fibrous branches towards various directions. Because of the large surface area and porosity, the as-prepared Sr-modified SiGe anode delivers an excellent capacity of 1166.6 mA h g-1 at 0.1 A g-1 after 100 cycles with a fantastic initial coulombic efficiency of 83.62%. Besides, it has a superior rate performance with a reversible capacity of 675.3 mA h g-1 at the current density of 8 A g-1. It is demonstrated that the modification treatment that is widely used in metallurgy is also a promising strategy to synthesize high-performance battery electrodes and other energy storage materials.

17.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674965

RESUMO

Asexual lineages are perceived to be short-lived on evolutionary timescales. Hence, reports for exceptional cases of putative 'ancient asexuals' usually raise questions about the persistence of such species. So far, there have been few studies to solve the mystery in plants. The monotypic Kingdonia dating to the early Eocene, contains only K. uniflora that has no known definitive evidence for sexual reproduction nor records for having congeneric sexual species, raising the possibility that the species has persisted under strict asexuality for a long period of time. Here, we analyze whole genome polymorphism and divergence in K. uniflora. Our results show that K. uniflora is characterized by high allelic heterozygosity and elevated πN/πS ratio, in line with theoretical expectations under asexual evolution. Allele frequency spectrum analysis reveals the origin of asexuality in K. uniflora occurred prior to lineage differentiation of the species. Although divergence within K. uniflora individuals exceeds that between populations, the topologies of the two haplotype trees, however, fail to match each other, indicating long-term asexuality is unlikely to account for the high allele divergence and K. uniflora may have a recent hybrid origin. Phi-test shows a statistical probability of recombination for the conflicting phylogenetic signals revealed by the split network, suggesting K. uniflora engages in undetected sexual reproduction. Detection of elevated genetic differentiation and premature stop codons (in some populations) in genes regulating seed development indicates mutational degradation of sexuality-specific genes in K. uniflora. This study unfolds the origin and persistence mechanism of a plant lineage that has been known to reproduce asexually and presents the genomic consequences of lack of sexuality.


Assuntos
Ranunculales , Reprodução Assexuada , Humanos , Filogenia , Reprodução Assexuada/genética , Metagenômica , Sexualidade , Genômica , Alelos , Sementes
18.
Phytomedicine ; 109: 154555, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610160

RESUMO

BACKGROUND: Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD. However, whether EsA affects tau pathology and its specific mechanism of action in AD mice remains unclear. PURPOSE: To investigate the roles and mechanisms of EsA in cognitive decline and tau pathology in a triple transgenic AD (3 × Tg-AD) mouse model. METHODS: EsA (5 and 10 mg/kg) was administered via intraperitoneal injection to 8-month-old AD mice for eight consecutive weeks. Y-maze and novel object recognition tasks were used to evaluate the cognitive abilities of mice. Potential signaling pathways and targets in EsA-treated AD mice were assessed using quantitative proteomic analysis. The NFT levels and hippocampal synapse numbers were investigated using Gallyas-Braak silver staining and transmission electron microscopy, respectively. Western blotting and immunofluorescence assays were used to measure the expression of tau-associated proteins. RESULTS: EsA administration attenuated memory and recognition deficits and synaptic damage in AD mice. Isobaric tags for relative and absolute quantitation proteomic analysis of the mouse hippocampus revealed that EsA modulated the expression of some critical proteins, including brain-specific angiogenesis inhibitor 3, galectin-1, and Ras-related protein 24, whose biological roles are relevant to synaptic function and autophagy. Further research revealed that EsA upregulated AKT/GSK3ß activity, in turn, inhibited tau hyperphosphorylation and promoted autophagy to clear abnormally phosphorylated tau. In hippocampus-derived primary neurons, inhibiting AMP-activated protein kinase (AMPK) activity through dorsomorphin could eliminate the effect of EsA, as revealed by increased tau hyperphosphorylation, downregulated activity AKT/GSK3ß, and blocked autophagy. CONCLUSIONS: To our knowledge, this study is the first to demonstrate that EsA attenuates cognitive decline by targeting the pathways of both tau hyperphosphorylation and autophagic clearance in an AMPK-dependent manner and it shows a high reference value in AD pharmacotherapy research.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteômica , Proteínas tau/metabolismo , Fosforilação , Modelos Animais de Doenças , Hipocampo
19.
Biol Trace Elem Res ; 201(8): 3882-3902, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36333559

RESUMO

Chronic arsenic poisoning is a global health problem that affects millions of people, and studies have found that long-term ingestion of arsenic-containing compounds can lead to lung damage, but the exact mechanism is unknown. In this study, Sprague-Dawley (SD) rats were used as the research object, and the proteomic analysis method based on sequential window acquisition of all theoretical fragment ions (SWATH) was used to detect the changes in the expression levels of related proteins in the lung tissue of arsenic-exposed rats, and to explore the mechanism of arsenic compound-induced lung injury. The results showed that arsenic exposure resulted in the abnormal expression of collagen type III and proteins involved in metabolic, immune, and cellular processes, leading to the dysfunction of important pathways associated with these proteins, resulting in lung injury. It suggested that the underlying mechanism of arsenic-induced lung injury may be related to oxidative stress, immune injury, cell junction, and collagen type III. This result provides a new research idea for revealing the mechanism of lung injury caused by arsenic exposure.


Assuntos
Arsênio , Arsenicais , Lesão Pulmonar , Ratos , Animais , Arsênio/toxicidade , Lesão Pulmonar/induzido quimicamente , Proteômica/métodos , Colágeno Tipo III , Ratos Sprague-Dawley
20.
Front Plant Sci ; 13: 893201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275552

RESUMO

Polygonaceae has a complex taxonomic history, although a few studies using plastid or nuclear DNA fragments have explored relationships within this family, intrafamilial relationships remain controversial. Here, we newly sequenced and annotated 17 plastomes representing 12 genera within Polygonaceae. Combined with previously published data, a total of 49 plastomes representing 22/46 Polygonaceae genera and 16/20 Polygonoideae genera were collected to infer the phylogeny of Polygonaceae, with an emphasis on Polygonoideae. Plastome comparisons revealed high conservation within Polygonoideae in structure and gene order. Phylogenetic analyses using both Maximum Likelihood and Bayesian methods revealed two major clades and seven tribes within Polygonoideae. BEAST and S-DIVA analyses suggested a Paleocene origin of Polygonoideae in Asia. While most genera of Polygonoideae originated and further diversified in Asia, a few genera experienced multiple long-distance dispersal events from Eurasia to North America after the Miocene, with a few dispersal events to the Southern Hemisphere also being detected. Both ancient vicariance and long-distance events have played important roles in shaping the current distribution pattern of Polygonoideae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA