Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35025747

RESUMO

Instrumented footwear represents a promising technology for spatiotemporal gait analysis in out-of-the-lab conditions. However, moderate accuracy impacts this technology's ability to capture subtle, but clinically meaningful, changes in gait patterns that may indicate adverse outcomes or underlying neurological conditions. This limitation hampers the use of instrumented footwear to aid functional assessments and clinical decision making. This paper introduces new transductive-learning inference models that substantially reduce measurement errors relative to conventional data processing techniques, without requiring subject-specific labelled data. The proposed models use subject-optimized input features and hyperparameters to adjust the spatiotemporal gait metrics (i.e., stride time, length, and velocity, swing time, and double support time) obtained with conventional techniques, resulting in computationally simpler models compared to end-to-end machine learning approaches. Model validity and reliability were evaluated against a gold-standard electronic walkway during a clinical gait performance test (6-minute walk test) administered to N = 95 senior residents of assisted living facilities with diverse levels of gait and balance impairments. Average reductions in absolute errors relative to conventional techniques were -42.0% and -33.5% for spatial and gait-phase parameters, respectively, indicating the potential of transductive learning models for improving the accuracy of instrumented footwear for ambulatory gait analysis.


Assuntos
Moradias Assistidas , Análise da Marcha , Idoso , Marcha , Humanos , Reprodutibilidade dos Testes , Análise Espaço-Temporal , Caminhada
2.
Sensors (Basel) ; 20(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708450

RESUMO

Biofeedback systems have been extensively used in walking exercises for gait improvement. Past research has focused on modulating the wearer's cadence, gait variability, or symmetry, but none of the previous works has addressed the problem of inducing a desired walking speed in the wearer. In this paper, we present a new, minimally obtrusive wearable biofeedback system (WBS) that uses closed-loop vibrotactile control to elicit desired changes in the wearer's walking speed, based on the predicted user response to anticipatory and delayed feedback. The performance of the proposed control was compared to conventional open-loop rhythmic vibrotactile stimulation with N = 10 healthy individuals who were asked to complete a set of walking tasks along an oval path. The closed-loop vibrotactile control consistently demonstrated better performance than the open-loop control in inducing desired changes in the wearer's walking speed, both with constant and with time-varying target walking speeds. Neither open-loop nor closed-loop stimuli affected natural gait significantly, when the target walking speed was set to the individual's preferred walking speed. Given the importance of walking speed as a summary indicator of health and physical performance, the closed-loop vibrotactile control can pave the way for new technology-enhanced protocols for gait rehabilitation.


Assuntos
Biorretroalimentação Psicológica , Velocidade de Caminhada , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Masculino , Reabilitação
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(1): 191-202, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831428

RESUMO

Wearable sensors have been proposed as alternatives to traditional laboratory equipment for low-cost and portable real-time gait analysis in unconstrained environments. However, the moderate accuracy of these systems currently limits their widespread use. In this paper, we show that support vector regression (SVR) models can be used to extract accurate estimates of fundamental gait parameters (i.e., stride length, velocity, and foot clearance), from custom-engineered instrumented insoles (SportSole) during walking and running tasks. Additionally, these learning-based models are robust to inter-subject variability, thereby making it unnecessary to collect subject-specific training data. Gait analysis was performed in N=14 healthy subjects during two separate sessions, each including 6-minute bouts of treadmill walking and running at different speeds (i.e., 85% and 115% of each subject's preferred speed). Gait metrics were simultaneously measured with the instrumented insoles and with reference laboratory equipment. SVR models yielded excellent intraclass correlation coefficients (ICC) in all the gait parameters analyzed. Percentage mean absolute errors (MAE%) in stride length, velocity, and foot clearance obtained with SVR models were 1.37%±0.49%, 1.23%±0.27%, and 2.08%±0.72% for walking, 2.59%±0.64%, 2.91%±0.85%, and 5.13%±1.52% for running, respectively. These findings provide evidence that machine learning regression is a promising new approach to improve the accuracy of wearable sensors for gait analysis.


Assuntos
Marcha/fisiologia , Aprendizado de Máquina , Corrida/fisiologia , Caminhada/fisiologia , Adulto , Algoritmos , Fenômenos Biomecânicos , Pé/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Aparelhos Ortopédicos , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte , Adulto Jovem
4.
IEEE Int Conf Rehabil Robot ; 2019: 145-150, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374621

RESUMO

The trend toward soft wearable robotic systems creates a compelling need for new and reliable sensor systems that do not require a rigid mounting frame. Despite the growing use of inertial measurement units (IMUs) in motion tracking applications, sensor drift and IMU-to-segment misalignment still represent major problems in applications requiring high accuracy. This paper proposes a novel 2-step calibration method which takes advantage of the periodic nature of human locomotion to improve the accuracy of wearable inertial sensors in measuring lower-limb joint angles. Specifically, the method was applied to the determination of the hip joint angles during walking tasks. The accuracy and precision of the calibration method were accessed in a group of N =8 subjects who walked with a custom-designed inertial motion capture system at 85% and 115% of their comfortable pace, using an optical motion capture system as reference. In light of its low computational complexity and good accuracy, the proposed approach shows promise for embedded applications, including closed-loop control of soft wearable robotic systems.


Assuntos
Locomoção , Dispositivos Eletrônicos Vestíveis , Calibragem , Marcha/fisiologia , Articulação do Quadril/fisiologia , Humanos , Masculino , Análise de Regressão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA