Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305233

RESUMO

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Assuntos
Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Transtorno Depressivo Maior/genética , Fosfatidilinositol 3-Quinases , Neurônios , Plasticidade Neuronal
2.
Biomolecules ; 12(6)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35740910

RESUMO

Zinc is essential for human growth and development. As a trace nutrient, zinc plays important roles in numerous signal transduction pathways involved in distinct physiologic or pathologic processes. Protein phosphorylation is a posttranslational modification which regulates protein activity, degradation, and interaction with other molecules. Protein kinases (PKs) and phosphatases (PPs), with their effects of adding phosphate to or removing phosphate from certain substrates, are master regulators in controlling the phosphorylation of proteins. In this review, we summarize the disturbance of zinc homeostasis and role of zinc disturbance in regulating protein kinases and protein phosphatases in neurodegenerative diseases, with the focus of that in Alzheimer's disease, providing a new perspective for understanding the mechanisms of these neurologic diseases.


Assuntos
Doenças Neurodegenerativas , Proteínas Quinases , Humanos , Fosfatos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/fisiologia , Proteínas Quinases/metabolismo , Zinco/metabolismo
3.
Curr Med Sci ; 40(2): 389, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32337701

RESUMO

The article "Protein Phosphatase 2A as a Drug Target in the Treatment of Cancer and Alzheimer's Disease", written by Hui WEI, Hui-liang ZHANG, Jia-zhao XIE, Dong-li MENG, Xiao-chuan WANG, Dan KE, Ji ZENG, Rong LIU, was originally published electronically on the publisher's internet portal on 13 March 2020 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The original article has been corrected.Corresponding authors: Dan KE, E-mail: kedan@hust.edu.cn; Ji ZENG, E-mail: whzjmicro@163.com.

4.
Curr Med Sci ; 40(1): 1-8, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32166659

RESUMO

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase which participates in the regulation of multiple cellular processes. As a confirmed tumor suppressor, PP2A activity is downregulated in tumors and its re-activation can induce apoptosis of cancer cells. In the brains of Alzheimer's disease (AD) patients, decreased PP2A activity also plays a key role in promoting tau hyperphosphorylation and Aß generation. In this review, we discussed compounds aiming at modulating PP2A activity in the treatment of cancer or AD. The upstream factors that inactivate PP2A in diseases have not been fully elucidated and further studies are needed. It will help for the refinement and development of novel and clinically tractable PP2A-targeted compounds or therapies for the treatment of tumor and AD.


Assuntos
Doença de Alzheimer/metabolismo , Neoplasias/metabolismo , Proteína Fosfatase 2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico
5.
Neurotherapeutics ; 17(3): 1087-1103, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096091

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease for which there are limited therapeutic strategies. Protein phosphatase 2A (PP2A) activity is decreased in AD brains, which promotes the hyperphosphorylation of Tau and APP, thus participate in the formation of neurofibrillary tangles (NFTs) and ß-amyloid (Aß) overproduction. In this study, the effect of synthetic tricyclic sulfonamide PP2A activators (aka SMAPs) on reducing AD-like pathogenesis was evaluated in AD cell models and AD-like hyperhomocysteinemia (HHcy) rat models. SMAPs effectively increased PP2A activity, and decreased tau phosphorylation and Aß40/42 levels in AD cell models. In HHcy-AD rat models, cognitive impairments induced by HHcy were rescued by SMAP administration. HHcy-induced tau hyperphosphorylation and Aß overproduction were ameliorated through increasing PP2A activity on compound treatment. Importantly, SMAP therapy also prevented neuronal cell spine loss and neuronal synapse impairment in the hippocampus of HHcy-AD rats. In summary, our data reveal that pharmacological PP2A reactivation may be a novel therapeutic strategy for AD treatment, and that the tricyclic sulfonamides constitute a novel candidate class of AD therapeutic.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Proteína Fosfatase 2/metabolismo , Sulfonamidas/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Animais , Células HEK293 , Homocisteína/toxicidade , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Sulfonamidas/química , Sulfonamidas/farmacologia
6.
Carbohydr Polym ; 194: 236-244, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801834

RESUMO

Maltodextrin (MD) based polyurethane (MDPU) was prepared by the reaction of MD and polyethyleneglicol (PEG) polyurethane prepolymer (PUP). The structure and properties of the MDPU were investigated by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscope (SEM), Energy dispersive X-ray spectrometry (EDS), and tensile-testing machine in detail. Chemical structure of MDPU was confirmed by FTIR and 1H NMR. MDPU with 66.7% of PUP (MDPU-0.5) was a thermoset plastic with good elasticity but the others (MDPU-1, MDPU-2, and MDPU-3) were thermoplastics. TGA analysis showed that the MDPUs exhibited three stages of the thermal degradation, mainly including urethane linkage (I, 197-268 °C), MD and PUP components (II, 268-380 °C) and the formed stable structures during thermal degradation (III, 400-505 °C), respectively. The various degrees of miscibility were presented. The mechanical properties of thermoplastic MDPUs exhibited relatively high elongation at break under the given relative humidity.

7.
Pharmacogn Mag ; 13(51): 523-527, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28839383

RESUMO

BACKGROUND: Withaferin-A (WF-A) is a well-known dietary compound isolated from Withania sominifera. It has tremendous pharmacological potential and has been shown to exhibit antiproliferative activity against several types of cancerous cells. Currently, the main focus of anti-cancer therapeutic development is to identify apoptosis inducing drug-like molecules. Osteosarcoma is a rare type of osteocancer, affecting human. The present study therefore focused on the evaluation of antitumor potential of WF-A against several osteosarcoma cell lines. MATERIALS AND METHODS: MTT assay was used to evaluate WF-A against osteosarcoma cell lines and to calculate the IC50. DAPI staining was used to confirm the apoptosis inducing potential of WF-A. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results revealed that that WF-A exhibited strong antiproliferative activity against all the cells lines, with IC50 ranging from 0.32 to 7.6 µM. The lowest IC50 (0.32 µM) was observed against U2OS cell line and therefore it was selected for further analysis. DAPI staining indicated that WF-A exhibited antiproliferative activity via induction of apoptosis. Moreover, WF-A induced ROS-mediated reduction in mitochondrial membrane potential ΔΨm) in a dose-dependent manner and activation of caspase-3 in osteosarcoma cells. CONCLUSION: We propose that WF-A may prove a potent therapeutic agent for inducing apoptosis in osteosarcoma cell lines via generation of ROS and disruption of mitochondrial membrane potential. SUMMARY: WF-A exhibits strong anticancer activity against osteosarcoma cell linesAntiproliferative activity of WF-A is via induction of apoptosisWF-A induced ROS-mediated reduction in mitochondrial membrane potentialWF-A induced expression of caspase-3 in osteosarcoma cells. Abbreviations used: WA: Withaferin A; ROS: Reactive oxygen species; OS: Osteosarcoma; MMP: Mitochondrial membrane potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA