Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2307646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37812198

RESUMO

Herein, a binary cathode interface layer (CIL) strategy based on the industrial solvent fractionated LignoBoost kraft lignin (KL) is adopted for fabrication of organic solar cells (OSCs). The uniformly distributed phenol moieties in KL enable it to easily form hydrogen bonds with commonly used CIL materials, i.e., bathocuproine (BCP) and PFN-Br, resulting in binary CILs with tunable work function (WF). This work shows that the binary CILs work well in OSCs with large KL ratio compatibility, exhibiting equivalent or even higher efficiency to the traditional CILs in state of art OSCs. In addition, the combination of KL and BCP significantly enhanced OSC stability, owing to KL blocking the reaction between BCP and nonfullerene acceptors (NFAs). This work provides a simple and effective way to achieve high-efficient OSCs with better stability and sustainability by using wood-based materials.

2.
Angew Chem Int Ed Engl ; 62(48): e202311645, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37819601

RESUMO

As a novel class of materials, D-A conjugated macrocycles hold significant promise for chemical science. However, their potential in photovoltaic remains largely untapped due to the complexity of introducing multiple donor and acceptor moieties into the design and synthesis of cyclic π-conjugated molecules. Here, we report a multiple D-A ring-like conjugated molecule (RCM) via the coupling of dimer molecule DBTP-C3 as a template and thiophenes in high yields. RCM exhibits a narrow optical gap (1.33 eV) and excellent thermal stability, and shows a remarkable photoluminescence yield (ΦPL ) of 11.1 % in solution, much higher than non-cyclic analogues. Organic solar cell (OSC) constructed with RCM as electron acceptor shows efficient charge separation at donor-acceptor band offsets and achieves a power conversion efficiency (PCE) of 14.2 %-approximately fourfold higher than macrocycle-based OSCs reported so far. This is partly due to low non-radiative voltage loss down to 0.20 eV and a high electroluminescence yield (ΦEL ) of 4×10-4 . Our findings emphasize the potential of D-A cyclic conjugated molecules in advancing organic photovoltaic technology.

3.
Adv Mater ; 35(30): e2300922, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37086205

RESUMO

Charge-transport layers are essential for achieving electrically pumped perovskite lasers. However, their role in perovskite lasing is not fully understood. Here, the role of charge-transport layers on the lasing actions of perovskite films is explored by investigating the amplified spontaneous emission (ASE) thresholds. A largely reduced ASE threshold and enhanced ASE intensity is demonstrated by introducing an additional hole transport layer poly(triaryl amine) (PTAA). It is shown that the key role of the PTAA layer is to accelerate the hot-carrier cooling process by extracting holes in perovskites. With reduced hot holes, the Auger recombination loss is largely suppressed, resulting in decreased ASE threshold. This argument is further supported by the fact that the ASE threshold can be further reduced from 25.7 to 7.2 µJ cm-2 upon switching the pumping wavelength from 400 to 500 nm to directly avoid excess hot-hole generation. This work exemplifies how to further reduce the ASE threshold with transport layer engineering through hot-hole manipulation. This is critical to maintaining the excellent gain properties of perovskites when integrating them into electrical devices, paving the way for electrically pumped perovskite lasers.

4.
Nat Commun ; 13(1): 2046, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440117

RESUMO

Energy level alignment (ELA) at donor (D) -acceptor (A) heterojunctions is essential for understanding the charge generation and recombination process in organic photovoltaic devices. However, the ELA at the D-A interfaces is largely underdetermined, resulting in debates on the fundamental operating mechanisms of high-efficiency non-fullerene organic solar cells. Here, we systematically investigate ELA and its depth-dependent variation of a range of donor/non-fullerene-acceptor interfaces by fabricating and characterizing D-A quasi bilayers and planar bilayers. In contrast to previous assumptions, we observe significant vacuum level (VL) shifts existing at the D-A interfaces, which are demonstrated to be abrupt, extending over only 1-2 layers at the heterojunctions, and are attributed to interface dipoles induced by D-A electrostatic potential differences. The VL shifts result in reduced interfacial energetic offsets and increased charge transfer (CT) state energies which reconcile the conflicting observations of large energy level offsets inferred from neat films and large CT energies of donor - non-fullerene-acceptor systems.

5.
J Phys Chem Lett ; 12(40): 9874-9881, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34609870

RESUMO

Among the parameters determining the efficiency of an organic solar cell, the open-circuit voltage (VOC) is the one with most room for improvement. Existing models for the description of VOC assume that photogenerated charge carriers are thermalized. Here, we demonstrate that quasi-equilibrium concepts cannot fully describe VOC of disordered organic devices. For two representative donor:acceptor blends, it is shown that VOC is actually 0.1-0.2 V higher than it would be if the system was in thermodynamic equilibrium. Extensive numerical modeling reveals that the excess energy is mainly due to incomplete relaxation in the disorder-broadened density of states. These findings indicate that organic solar cells work as nonequilibrium devices, in which part of the photon excess energy is harvested in the form of an enhanced VOC.

6.
ACS Appl Mater Interfaces ; 12(39): 43984-43991, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32885945

RESUMO

The energy offset, considered as the driving force for charge transfer between organic molecules, has significant effects on both charge separation and charge recombination in organic solar cells. Herein, we designed material systems with gradually shifting energy offsets, including both positive and negative values. Time-resolved spectroscopy was used to monitor the charge dynamics within the bulk heterojunction. It is striking to find that there is still charge transfer and charge generation when the energy offset reached -0.10 eV (ultraviolet photoelectron spectroscopy data). This work not only indicates the feasibility of the free carrier generation and the following charge separation under the condition of a negative offset but also elucidates the relationship between the charge transfer and the energy offset in the case of polymer chlorination.

7.
Adv Mater ; 32(9): e1906763, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31975446

RESUMO

Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.

8.
Nano Lett ; 19(8): 5053-5061, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298866

RESUMO

Solution-processed organic photovoltaics (OPVs) based on bulk-heterojunctions have gained significant attention to alleviate the increasing demend of fossil fuel in the past two decades. OPVs combined of a wide bandgap polymer donor and a narrow bandgap nonfullerene acceptor show potential to achieve high performance. However, there are still two reasons to limit the OPVs performance. One, although this combination can expand from the ultraviolet to the near-infrared region, the overall external quantum efficiency of the device suffers low values. The other one is the low open-circuit voltage (VOC) of devices resulting from the relatively downshifted lowest unoccupied molecular orbital (LUMO) of the narrow bandgap. Herein, the approach to select and incorporate a versatile third component into the active layer is reported. A third component with a bandgap larger than that of the acceptor, and absorption spectra and LUMO levels lying within that of the donor and acceptor, is demonstrated to be effective to conquer these issues. As a result, the power conversion efficiencies (PCEs) are enhanced by the elevated short-circuit current and VOC; the champion PCEs are 11.1% and 13.1% for PTB7-Th:IEICO-4F based and PBDB-T:Y1 based solar cells, respectively.

9.
J Phys Chem Lett ; 10(11): 3171-3175, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31119942

RESUMO

Two-dimensional (2D) perovskites incorporating hydrophobic organic spacer cations show improved film stability and morphology compared to their three-dimensional (3D) counterparts. However, 2D perovskites usually exhibit low photoluminescence quantum efficiency (PLQE) owing to strong exciton-phonon interaction at room temperature, which limits their efficiency in light-emitting diodes (LEDs). Here, we demonstrate that the device performance of 2D perovskite LEDs can be significantly enhanced by doping Mn2+ in (benzimidazolium)2PbI4 2D perovskite films to suppress the exciton-phonon interaction. The distorted [PbI6]4- octahedra by Mn-doping and the rigid benzimidazolium (BIZ) ring without branched chains in the 2D perovskite structure lead to improved crystallinity and rigidity of the perovskites, resulting in suppressed phonon-exciton interaction and enhanced PLQE. On the basis of this strategy, for the first time, we report yellow electroluminescence from free excitons in 2D ( n = 1) perovskites with a maximum brightness of 225 cd m-2 and a peak EQE of 0.045%.

10.
Nat Commun ; 10(1): 1624, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944314

RESUMO

The original PDF version of this Article contained an error in the Additional information section, which incorrectly included the statement 'This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019'. This has been removed from the PDF version of the Article. The HTML version was correct from the time of publication.

11.
Nat Commun ; 10(1): 570, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718494

RESUMO

Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm-2, resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.

12.
Adv Mater ; 30(51): e1804771, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30345566

RESUMO

Quasi-2D layered organometal halide perovskites have recently emerged as promising candidates for solar cells, because of their intrinsic stability compared to 3D analogs. However, relatively low power conversion efficiency (PCE) limits the application of 2D layered perovskites in photovoltaics, due to large energy band gap, high exciton binding energy, and poor interlayer charge transport. Here, efficient and water-stable quasi-2D perovskite solar cells with a peak PCE of 18.20% by using 3-bromobenzylammonium iodide are demonstrated. The unencapsulated devices sustain over 82% of their initial efficiency after 2400 h under relative humidity of ≈40%, and show almost unchanged photovoltaic parameters after immersion into water for 60 s. The robust performance of perovskite solar cells results from the quasi-2D perovskite films with hydrophobic nature and a high degree of electronic order and high crystallinity, which consists of both ordered large-bandgap perovskites with the vertical growth in the bottom region and oriented small-bandgap components in the top region. Moreover, due to the suppressed nonradiative recombination, the unencapsulated photovoltaic devices can work well as light-emitting diodes (LEDs), exhibiting an external quantum efficiency of 3.85% and a long operational lifetime of ≈96 h at a high current density of 200 mA cm-2 in air.

13.
Adv Sci (Weinh) ; 5(8): 1800755, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128263

RESUMO

Herein, efficient organic solar cells (OSCs) are realized with the ternary blend of a medium band gap donor (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T)) with a low band gap acceptor (2,2'-((2Z,2'Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (HF-PCIC)) and a near-infrared acceptor (2,2'-((2Z,2'Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IEICO-4F)). It is shown that the introduction of IEICO-4F third component into PBDB-T:HF-PCIC blend increases the short-circuit current density (Jsc) of the ternary OSC to 23.46 mA cm-2, with a 44% increment over those of binary devices. The significant current improvement originates from the broadened absorption range and the active layer morphology optimization through the introduction of IEICO-4F component. Furthermore, the energy loss of the ternary cells (0.59 eV) is much decreased over that of the binary cells (0.80 eV) due to the reduction of both radiative recombination from the absorption below the band gap and nonradiative recombination upon the addition of IEICO-4F. Therefore, the power conversion efficiency increases dramatically from 8.82% for the binary cells to 11.20% for the ternary cells. This work provides good examples for simultaneously achieving both significant current enhancement and energy loss mitigation in OSCs, which would lead to the further construction of highly efficient ternary OSCs.

14.
ACS Appl Mater Interfaces ; 9(42): 36810-36816, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28985052

RESUMO

One-step solution process is the simplest method to fabricate organic-inorganic metal halide perovskite thin films, which however does not work well when employed in the planar-heterojunction (PHJ) solar cells due to the generally poor film morphology. Here we show that hydrazinium chloride can be used as an additive in the precursor solution to produce perovskite films featuring higher coverage and better crystallinity. The light absorption ability and charge carrier lifetime are both significantly improved accordingly. Under the optimal additive ratio, the average power conversion efficiency (PCE) of the inverted PHJ perovskite solar cells greatly increases by as much as 70%, and the champion device shows a satisfying PCE of 12.66%. These results suggest that N2H5Cl is a promising additive for fabricating high-efficiency perovskite solar cells via one-step method, which could be of interest in the future commercial solar cell industry.

15.
Phys Chem Chem Phys ; 19(6): 4516-4521, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120956

RESUMO

Recently, perovskite based solar cells have attracted lots of research interest, some of which is in the passivation of perovskite surfaces, particularly the heterojunction based surface passivation. In this study, the optical dynamics of MAPbBr3 single crystals with and without heterojunction passivation were studied systematically by means of a time-resolved spectroscopic technique for the first time. The emission lifetime of MAPbBr3 single crystals under two-photon (1064 nm) excitation is a few orders of magnitude longer than that measured under one-photon (355 nm or 532 nm) excitation. Interestingly, with surface passivation, the lifetime measured at 355 nm excitations could be tuned significantly, whereas the lifetime change under 1064 nm excitations was considerably less. Our results give a direct evidence of surface quench by comparing the lifetimes before and after surface passivation. Furthermore, the results demonstrate that proper MAPbCl3-MAPbBr3 heterojunctions can dramatically reduce the recombination channels in the surface region, which can be potentially useful for perovskite based solar cells, light emitting diodes (LED), and sensitive detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA