Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9808, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684836

RESUMO

Riverbank instability in the seasonally frozen zone is primarily caused by freeze-thaw erosion. Using the triaxial freeze-thaw test on the bank of Shisifenzi Bend in the Yellow River section of Inner Mongolia, we investigated the changes in the mechanical properties of the soil at different freezing temperatures and freeze-thaw times, and analyzed the bank's stability before and after freezing based on the finite element strength reduction method. The results showed that the elastic modulus, cohesion, internal friction angle and shear strength of the soil tended to decrease with the increase in the number of freeze-thaw cycles and the decrease in freezing temperature. After 10 freezing cycles at - 5 â„ƒ, - 10 â„ƒ, - 15 â„ƒ and - 20 â„ƒ, the modulus of elasticity of soil decreased by 40.84 ~ 68.70%, the cohesion decreased by 41.96 ~ 56.66%, the shear strength decreased by 41.92 ~ 57.32%, respectively. Moreover, the stability safety coefficient of bank slope decreased by 18.58% after freeze-thaw, indicating that the freeze-thaw effect will significantly reduce the stability of bank slope, and the bank slope is more likely to be destabilized and damaged after freeze-thaw.

2.
J Environ Sci (China) ; 138: 709-718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135433

RESUMO

Formaldehyde (HCHO) is a common indoor pollutant that is detrimental to human health. Its efficient removal has become an urgent demand to reduce the public health risk. In this work, Ag-MnOx-based catalysts were prepared and activated under different atmosphere (i.e., air, hydrogen (H2) and carbon monoxide (CO)) for efficient oxidation of HCHO. The catalyst activated with CO (Ag/Mn-CO) displayed the highest activity among the tested samples with 90% conversion at 100°C under a gas space velocity of 75,000 mL/(gcat·hr). Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO. In contrast, other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size, so that the integrate activity is limited by one specific reaction step. This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.


Assuntos
Oxigênio , Prata , Humanos , Óxidos , Oxirredução , Formaldeído , Catálise
3.
ACS Appl Mater Interfaces ; 16(1): 605-613, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131347

RESUMO

The catalytic oxidation of carbon monoxide (CO) under ambient conditions plays a crucial role in the abatement of indoor CO, which poses risks to human health. Despite the notable activity exhibited by Pt-based catalysts in CO oxidation, their efficacy is usually diminished by the CO self-poisoning issue. In this work, three different Pt/CeO2-based catalysts, which have distinct coordinative environments of Pt but an identical Pt/CeO2 substrate structure, were synthesized by activating the catalyst with CO using different temperatures and durations. Compared with clean and graphite-covered Pt on CeO2, the one modified by epoxy carbon showed higher activity and stability. The combination of characterizations and density functional theory modeling demonstrated that the clean Pt on CeO2 rapidly deactivated due to the CO self-poisoning albeit high initial activity, and conversely, low initial activity was observed for the more stable graphite-covered catalyst due to the obstruction of the Pt site. In contrast, epoxy carbon species on Pt shifted the d-band of Pt to lower energy, weakening the Pt-CO binding strength. Such a modification mitigated the self-poisoning effect while maintaining ample active sites and enabling the complete oxidative removal of CO under ambient conditions. This work may provide a general approach to tackling the self-poisoning issue.

4.
J Environ Sci (China) ; 134: 117-125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673527

RESUMO

Formaldehyde (HCHO) and carbon monoxide (CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO2 under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO2 displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst.


Assuntos
Poluentes Atmosféricos , Oxigênio , Humanos , Compostos de Manganês , Óxidos , Espécies Reativas de Oxigênio
5.
Nat Commun ; 14(1): 3944, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402751

RESUMO

Noble metals have been extensively employed in a variety of hydrotreating catalyst systems for their featured functionality of hydrogen activation but may also bring side reactions such as undesired deep hydrogenation. It is crucial to develop a viable approach to selectively inhibit side reactions while preserving beneficial functionalities. Herein, we present modifying Pd with alkenyl-type ligands that forms homogeneous-like Pd-alkene metallacycle structure on the heterogeneous Pd catalyst to achieve the selective hydrogenolysis and hydrogenation. Particularly, a doped alkenyl-type carbon ligand on Pd-Fe catalyst is demonstrated to donate electrons to Pd, creating an electron-rich environment that elongates the distance and weakens the electronic interaction between Pd and unsaturated C of the reactants/products to control the hydrogenation chemistry. Moreover, high H2 activation capability is maintained over Pd and the activated H is transferred to Fe to facilitate C-O bond cleavage or directly participate in the reaction on Pd. The modified Pd-Fe catalyst displays comparable C-O bond cleavage rate but much higher selectivity (>90%) than the bare Pd-Fe (<50%) in hydrotreating of diphenyl ether (DPE, modelling the strongest C-O linkage in lignin) and enhanced ethene selectivity (>90%) in acetylene hydrogenation. This work sheds light on the controlled synthesis of selective hydrotreating catalysts via mimicking homogeneous analogues.

6.
J Environ Sci (China) ; 125: 95-100, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375968

RESUMO

Pd/Al2O3 was pretreated by CO, H2 and NaBH4 reduction, respectively. The reduced catalysts were tested for o-xylene oxidation and characterized by power X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed decomposition of palladium hydride (TPDH). The characterizations indicate the pretreatments lead to distinct Pd particle sizes and amount of surface activated oxygen species, which are responsible for the catalytic performance. Compared with H2 and NaBH4 reduction methods, CO reduction shows a strong interaction between Pd and Al2O3 with smaller Pd particle size and more surface activated oxygen. It exhibited excellent catalytic performance, complete oxidation of 50 ppmV o-xylene at 85°C with a WHSV of 60,000 mL/(g∙hr).

7.
Environ Sci Technol ; 56(23): 17331-17340, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36354790

RESUMO

While utilization of transitional metals as a promoter has been extensively studied to enhance the activity of Pt-based catalysts for the oxidation of formaldehyde (HCHO), there is still a lack of well elucidated property-function relationship for the rational selection of a promoter in catalyst design. Herein, we modified a Pt/CeO2 catalyst with two transitional metal dopants (i.e., Mn and Cu) that showed negligible influence on the physical structure of the Pt-CeO2 matrix but distinct effects on the activity of the catalyst. Complementary characterizations combined with density functional theory modeling revealed that the transitional metal dopants significantly modified the electronic structure of the catalyst and shifted the d-band of Pt to higher energy with different extents, which may tune the bonding strength of HCHO/intermediates with the Pt-CeO2 interface domain. The catalyst with moderate bonding strength (i.e., Pt-Mn/CeO2) displayed the highest reactivity under the ambient condition, while Pt-Cu/CeO2 with the highest bonding strength showed a dramatically decreased activity. No correlation was observed between the abundancy of the active oxygen and catalytic activity, likely due to the oxygen supply having a much higher rate than the rate-determining step. This work contributes to the elucidation about the property-function relationship of a transitional metal dopant in Pt-based catalysts for the oxidation of HCHO.

8.
ACS Omega ; 7(24): 21000-21013, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755329

RESUMO

Biocompatible and biodegradable amphiphilic polymeric micelles (PLA-CMCS-g-OA) were prepared by surface grafting of oleic acid and polylactic acid onto carboxymethyl chitosan and were used as templates for the crystallization of camptothecin. The camptothecin (CPT) nanocrystals prepared by the novel micelle-templated antisolvent crystallization (mt-ASC) method demonstrated higher crystallinity, narrower particle size distribution, and slower release characteristic than those prepared by conventional antisolvent crystallization (c-ASC) using a high initial concentration and fast addition rate. In particular, the CPT release behavior of mt-ASC products in phosphate buffer solutions presented a pH-responsive characteristic with the increasing release rate of CPT under lower pH conditions. This work confirmed that amphiphilic nanomicelle-templated crystallization was an effective method for preparing drug nanocrystals.

9.
Environ Sci Technol ; 55(24): 16687-16698, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34847319

RESUMO

Metal-support interaction (MSI) has been widely recognized to be playing a pivotal role in regulating the catalytic activity of various reactions. In this work, the degree of MSI between Pt and CeO2 support was finely tuned by adjusting the activation condition, and the obtained catalysts were tested for the oxidative abatement of CO and HCHO under ambient conditions. The characterization of catalysts shows that activation of strongly interacting Pt-CeO2 at higher temperatures by H2 leads to a weaker MSI with increased electron density of Pt, and this modification of local electronic properties is demonstrated to result in enhanced O2 adsorption/activation to prevent the CO self-poisoning effect, while it abates the activity of CO adsorption/activation and oxidation of adsorbed CO. The Pt-CeO2 catalyst with a moderate MSI, which is able to balance each step in the catalytic cycle over Pt and Pt-CeO2 interface domains, displays the highest activity for CO/HCHO oxidation under ambient conditions.


Assuntos
Cério , Adsorção , Catálise , Metais , Oxirredução
10.
ChemSusChem ; 14(20): 4546-4555, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34378351

RESUMO

Iron-carbide-based catalysts have been explored in the selective hydrodeoxygenation (HDO) of phenol, aiming at elucidating the role of active site and alkali metal. Complementary characterization such as X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and scanning transmission electron microscopy coupled with electron energy loss spectroscopy, together with catalytic evaluations revealed a rapid structural reconstruction of iron carbide (Fe3 C) catalysts, leading to a stable defective graphene-covered metallic Fe active phase (G@Fe) under reaction conditions. Further studies using different alkali metals (i. e., Na, K, and Cs) revealed that alkali metals showed negligible effect on the phase transformation of Fe3 C. However, the reconstructed G@Fe doped with alkali metals inhibited the tautomerization, a facile reaction pathway to saturation of the aromatic ring, leading to enhanced selectivity to arene. The extent of inhibition of tautomerization or selectivity to arene was closely related to the degree of electron donation of alkali metal to Fe.

11.
Chem Sci ; 11(23): 5874-5880, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32874508

RESUMO

Development of inexpensive sulfur-free catalysts for selective hydrogenolysis of the C-O bond in phenolics (i.e., selective removal of oxygen without aromatic ring saturation) under liquid-phase conditions is highly challenging. Here, we report an efficient approach to engineer earth-abundant Fe catalysts with a graphene overlayer and alkali metal (i.e., Cs), which produces arenes with 100% selectivity from liquid-phase hydrodeoxygenation (HDO) of phenolics with high durability. In particular, we report that a thin (a few layers) surface graphene overlayer can be engineered on metallic Fe particles (G@Fe) by a controlled surface reaction of a carbonaceous compound, which prevents the iron surface from oxidation by hydroxyls or water produced during HDO reaction. More importantly, further tailoring the surface electronic properties of G@Fe with the addition of cesium, creating a Cs-G@Fe composite catalyst in contrast to a deactivated Cs@Fe one, promotes the selective C-O bond cleavage by inhibiting the tautomerization, a pathway that is very facile under liquid-phase conditions. The current study could open a general approach to rational design of highly efficient catalysts for HDO of phenolics.

12.
Sci Rep ; 7(1): 4550, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674413

RESUMO

Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO2. In this study, the kinetics of SO2 reactions on MnO2 with different morphologies (α, ß, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO2 uptake was highest on δ-MnO2 but lowest on ß-MnO2, with a geometric uptake coefficient (γobs) of (2.42 ± 0.13) ×10-2 and a corrected uptake coefficient (γc) of (1.48 ± 0.21) ×10-6 for the former while γobs of (3.35 ± 0.43) ×10-3 and γc of (7.46 ± 2.97) ×10-7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO2. The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO2 and γ-MnO2, respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO2 oxidation in the atmosphere.

13.
Sci Rep ; 5: 12950, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26263506

RESUMO

Ag-based catalysts with different supports (TiO2, Al2O3 and CeO2) were prepared by impregnation method and subsequently tested for the catalytic oxidation of formaldehyde (HCHO) at low temperature. The Ag/TiO2 catalyst showed the distinctive catalytic performance, achieving the complete HCHO conversion at around 95 °C. In contrast, the Ag/Al2O3 and Ag/CeO2 catalysts displayed much lower activity and the 100% conversion was reached at 110 °C and higher than 125 °C, respectively. The Ag-based catalysts were next characterized by several methods. The characterization results revealed that supports have the dramatic influence on the Ag particle sizes and dispersion. Kinetic tests showed that the Ag based catalyst on the TiO2, Al2O3 or CeO2 supports have the similar apparent activation energy of 65 kJ mol(-1), indicating that the catalytic mechanism keep immutability over these three catalysts. Therefore, Ag particle size and dispersion was confirmed to be the main factor affecting the catalytic performance for HCHO oxidation. The Ag/TiO2 catalyst has the highest Ag dispersion and the smallest Ag particle size, accordingly presenting the best catalytic performance for HCHO oxidation.

14.
J Environ Sci (China) ; 26(5): 1162-70, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079647

RESUMO

Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Níquel/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Catálise , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA