RESUMO
Early fire warning is critical to the safety and stability of power systems. However, current methods encounter challenges in capturing subtle features, limiting their effectiveness in providing timely alerts for potential fire hazards. To overcome this drawback, a novel detection algorithm for thin smoke was proposed to enhance early fire detection capabilities. The core is that the Patch-TBV feature was proposed first, and the total bounded variation (TBV) was computed at the patch level. This approach is rooted in the understanding that traditional methods struggle to detect minute variations in image characteristics, particularly in scenarios where the features are dispersed or subtle. By computing TBV at a more localized level, the algorithm proposed gains a finer granularity in assessing image quality, enabling it to capture subtle variations that might indicate the presence of smoke or early signs of a fire. Another key aspect that sets our algorithm apart is the incorporation of subtle variation magnification. This technique serves to magnify subtle features within the image, leveraging the computed TBV values. This magnification strategy is pivotal for improving the algorithm's precision in detecting subtle variations, especially in environments where smoke concentrations may be minimal or dispersed. To evaluate the algorithm's performance in real-world scenarios, a comprehensive dataset, named TIP, comprising 3,120 images was constructed. The dataset covers diverse conditions and potential challenges that might be encountered in practical applications. Experimental results confirm the robustness and effectiveness of the proposed algorithm, showcasing its ability to provide accurate and timely fire warnings in various contexts. In conclusion, our research not only identifies the limitations of existing methods in capturing subtle features for early fire detection but also proposes a sophisticated algorithm, integrating Patch-TBV and micro-variation amplification, to address these challenges. The algorithm's effectiveness and robustness are substantiated through extensive testing, demonstrating its potential as a valuable tool for enhancing fire safety in power systems and similar environments.
RESUMO
BACKGROUND: Reconstruction of significant soft tissue defects in the head and neck region after resection of extensive plexiform neurofibromas, as well as preservation and restoration of cosmetic and functional aspects, presents a considerable challenge. AIMS: The purpose is to evaluate the feasibility of eTMF in repairing substantial defects after the complete resection of NF1 PN. PATIENTS AND METHODS: Patients diagnosed with substantial neurofibromatosis (NP) type 1 (NF1), according to the revised criteria, underwent complete resection and remodeling of the facial aesthetic unit. An extended vertical lower trapezius island myocutaneous flap (eTIMF) was used for the defect reconstruction. Perioperative complications were evaluated using the Clavien-Dindo classification. ECOG PS was assessed. Postoperative follow-up at 6 months and completion of UW-QOL. The questionnaire included swallowing, chewing, speech, and quality of life scores. Two patients had pathogenic missense variants: c.5609G>A (p.Arg1870Gln) in exon 38 of NF1 in the first case, and c.4600C>T (p.Arg1534*) in exon 35 in the second case. RESULTS: Two eTMFs were harvested successfully. Five facial esthetic units were remodeled, and 4 units were remodeled. Two extensive tumors were nearly entirely removed. No severe complications were noted. The ECOG PS improved from grade 3 in the first week postsurgery to grade 0 by the eighth week. The UW-QOL results indicated that swallowing, chewing, and speaking functions returned to their preoperative levels, with a 40% improvement in quality of life, reaching 60% and 80%, respectively. CONCLUSIONS: eTMF to repair substantial defects following total resection of NF1 PN and facial esthetic unit remodeling enhances appearance, function, and psychosocial outcomes. This technique is safe, efficient, resource-conserving, and simple to implement.
RESUMO
BACKGROUND: The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown. METHODS: Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice. RESULTS: POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo. Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p, and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p, miR-29a-3p, PIK3R1, and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1, PIK3R1, and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples. CONCLUSIONS: The POU2F1-miR-29b-3p/miR-29a-3p-PIK3R1/PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
RESUMO
Image registration is a fundamental task in various applications of medical image analysis and plays a crucial role in auxiliary diagnosis, treatment, and surgical navigation. However, cardiac image registration is challenging due to the large non-rigid deformation of the heart and the complex anatomical structure. To address this challenge, this paper proposes an independently trained multi-scale registration network based on an image pyramid. By down-sampling the original input image multiple times, we can construct image pyramid pairs, and design a multi-scale registration network using image pyramid pairs of different resolutions as the training set. Using image pairs of different resolutions, train each registration network independently to extract image features from the image pairs at different resolutions. During the testing stage, the large deformation registration is decomposed into a multi-scale registration process. The deformation fields of different resolutions are fused by a step-by-step deformation method, thereby addressing the challenge of directly handling large deformations. Experiments were conducted on the open cardiac dataset ACDC (Automated Cardiac Diagnosis Challenge); the proposed method achieved an average Dice score of 0.828 in the experimental results. Through comparative experiments, it has been demonstrated that the proposed method effectively addressed the challenge of heart image registration and achieved superior registration results for cardiac images.
Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Coração/diagnóstico por imagem , Redes Neurais de Computação , Interpretação de Imagem Assistida por Computador/métodos , Bases de Dados FactuaisRESUMO
OBJECTIVE: To analyze the current treatment status and prognostic regression of the chronic NK cell lymphoproliferative disorder (CLPD-NK). METHODS: We retrospectively analyzed the clinical features, treatment and prognosis of 18 patients with CLPD-NK who were treated at our Hospital between September 2016 and September 2022. RESULTS: Eighteen patients were included: three patients were treated with chemotherapy, five patients underwent immune-related therapy, one patient was treated with glucocorticoids alone, five patients were administered granulocyte colony-stimulating factor, blood transfusion therapy, or anti-infection therapy, followed by observation and follow-up, and four patients were observed without treatment. Fifteen patients survived, including two patients who achieved complete remission (CR) and seven patients who achieved partial remission (PR), of whom one patient progressed to Aggressive NK-cell leukemia (ANKL) and sustained remission after multiple lines of treatment; three patients were not reviewed, of which one patient was still in active disease, three patients developed hemophagocytic syndrome during treatment and eventually died, one of them had positive Epstein-Barr virus (EBV) expression. The 5-years overall survival rate was 83%. CONCLUSION: Most patients with CLPD-NK have inert progression and a good prognosis, whereas some patients have a poor prognosis after progressing to ANKL and combined with hemophagocytic syndrome. Abnormal NK cells invading the center suggest a high possibility of ANKL development, and immunosuppressants and hormones are effective treatments for this disease.
Assuntos
Infecções por Vírus Epstein-Barr , Leucemia Linfocítica Granular Grande , Leucemia , Linfo-Histiocitose Hemofagocítica , Transtornos Linfoproliferativos , Humanos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Estudos Retrospectivos , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/terapia , Prognóstico , Células Matadoras Naturais/metabolismo , Doença Crônica , Leucemia/metabolismoRESUMO
Computed tomography (CT) and cone beam computed tomography (CBCT) registration plays an important role in radiotherapy. However, the poor quality of CBCT makes CBCT-CT multimodal registration challenging. Effective feature fusion and mapping often lead to better registration results for multimodal registration. Therefore, we proposed a new backbone network BCSwinReg and a cross-modal attention module CrossSwin. Specifically, a cross-modal attention CrossSwin is designed to promote multi-modal feature fusion, map the multi-modal domain to the common domain, and thus helping the network learn the correspondence between images better. Furthermore, a new network, BCSwinReg, is proposed to discover correspondence through cross-attention exchange information, obtain multi-level semantic information through a multi-resolution strategy, and finally integrate the deformation of multi-resolutions by the divide-conquer cascade method. We performed experiments on the publicly available 4D-Lung dataset to demonstrate the effectiveness of CrossSwin and BCSwinReg. Compared with VoxelMorph, the BCSwinReg has obtained performance improvements of 3.3% in Dice Similarity Coefficient (DSC) and 0.19 in the average 95% Hausdorff distance (HD95).
Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada de Feixe Cônico/métodosRESUMO
Gastric cancer (GC) constitutes substantial cancer mortality worldwide. Several cancer types aberrantly express bone marrow stromal cell antigen 2 (BST2), yet its functional and underlying mechanisms in GC progression remain unknown. In our study, RNA sequencing data revealed that BST2 was transcriptionally activated by homeobox D9 (HOXD9). BST2 was significantly upregulated in GC tissues and promoted epithelial-mesenchymal transition and metastasis of GC. BST2 knockdown reversed HOXD9's oncogenic effect on GC metastasis. Moreover, BST2 messenger RNA stability could be enhanced by poly(A) binding protein cytoplasmic 1 (PABPC1) through the interaction between BST2 3'-UTR and PABPC1 in GC cells. PABPC1 promoted GC metastasis, which BST2 silencing attenuated in vitro and in vivo. In addition, positive correlations among HOXD9, BST2, and PABPC1 were established in clinical samples. Taken together, increased expression of BST2 induced by HOXD9 synergizing with PABPC1 promoted GC cell migration and invasion capacity.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Proteínas de Ligação a RNA , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , RNA , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Proteínas de Neoplasias , Proteínas de Homeodomínio/genética , Antígeno 2 do Estroma da Médula ÓsseaRESUMO
Various miRNAs have been shown to participate in the tumor progression and development of colorectal cancer (CRC). However, the role of miR-3913-5p in CRC are yet to be clearly defined. In the present study, we determine that miR-3913-5p is downregulated in CRC cell lines and CRC tissues. Exogenous miR-3913-5p expression weakens the CRC cells growth, migration and invasion. Mechanistically, miR-3913-5p directly targets the 3'UTR of CREB5. Overexpression of CREB5 reverses the suppression of CRC cells proliferation, migration and invasion induced by miR-3913-5p. Furthermore, ATF2 negatively regulates the transcription of miR-3913-5p by binding to its promoter. CREB5 can cooperate with ATF2. CREB5 is required for ATF2 in regulating miR-3913-5p. Finally, inverse correlations can be found between the expressions of miR-3913-5p and CREB5 or ATF2 in CRC tissues. Thus, a plausible mechanism of ATF2/miR-3913-5p/CREB5 axis regulating CRC progression is elucidated. Our findings suggest that miR-3913-5p functions as a tumor suppressor in CRC. ATF2/miR-3913-5p/CREB5 axis might be a potential therapeutic target against CRC progression.
Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular , Proliferação de Células/genética , Fator 2 Ativador da Transcrição/genética , Proteína A de Ligação a Elemento de Resposta do AMP CíclicoRESUMO
Transcription factors (TFs) and long noncoding RNAs (lncRNAs) contribute to gastric cancer (GC). However, the roles of TFs and lncRNAs in the invasion and metastasis of GC remain largely unknown. Here, we observed that the transcription factor VAX2 is significantly upregulated in GC cells and tissues and acts as an oncogene. Moreover, high VAX2 expression is associated with the advancement of tumors in GC. In terms of functionality, the enforced expression of VAX2 promotes the proliferation and metastasis of GC cells. Mechanistically, VAX2 specifically interacts with the LINC01189 promoter and represses LINC01189 transcription. Furthermore, LINC01189 exhibits significant downregulation in GC and functions as a suppressor gene. Functionally, it inhibits migratory and invasive abilities in GC cells. In the context of GC metastasis, VAX2 plays a role in modulating it by trans-repressing the expression of LINC01189. Additionally, LINC01189 binds to hnRNPF to enhance hnRNPF degradation through ubiquitination. The cooperation between LINC01189 and hnRNPF regulates GC cell invasion and migration. In addition, both VAX2 and hnRNPF are highly expressed, while LINC01189 is expressed in at low levels in GC tissues compared to normal gastric tissues. Our study suggests that VAX2 expression facilitates, while LINC01189 expression suppresses, metastasis and that the VAX2-LINC01189-hnRNPF axis plays a contributory role in GC development.
RESUMO
Parkinson's disease (PD) is a neurodegenerative disorder that causes gait abnormalities. Early and accurate recognition of PD gait is crucial for effective treatment. Recently, deep learning techniques have shown promising results in PD gait analysis. However, most existing methods focus on severity estimation and frozen gait detection, while the recognition of Parkinsonian gait and normal gait from the forward video has not been reported. In this paper, we propose a novel spatiotemporal modeling method for PD gait recognition, named WM-STGCN, which utilizes a Weighted adjacency matrix with virtual connection and Multi-scale temporal convolution in a Spatiotemporal Graph Convolution Network. The weighted matrix enables different intensities to be assigned to different spatial features, including virtual connections, while the multi-scale temporal convolution helps to effectively capture the temporal features at different scales. Moreover, we employ various approaches to augment skeleton data. Experimental results show that our proposed method achieved the best accuracy of 87.1% and an F1 score of 92.85%, outperforming Long short-term memory (LSTM), K-nearest neighbors (KNN), Decision tree, AdaBoost, and ST-GCN models. Our proposed WM-STGCN provides an effective spatiotemporal modeling method for PD gait recognition that outperforms existing methods. It has the potential for clinical application in PD diagnosis and treatment.
Assuntos
Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Análise da Marcha , Análise por Conglomerados , Memória de Longo PrazoRESUMO
Long non-coding RNAs (lncRNAs) have been functionally characterised in various diseases. LncRNA PAX-interacting protein 1-antisense RNA 1 (PAXIP1-AS1) has reportedly been associated with cancer development. However, its role in gastric cancer (GC) remains poorly understood. Here, we showed that PAXIP1-AS1 was transcriptionally repressed by homeobox D9 (HOXD9) and was significantly downregulated in GC tissues and cells. Decreased expression of PAXIP1-AS1 was positively correlated with tumour progression, while PAXIP1-AS1 overexpression inhibited cell growth and metastasis both in vitro and in vivo. PAXIP1-AS1 overexpression significantly attenuated HOXD9-enhanced epithelial-to-mesenchymal transition (EMT), invasion and metastasis in GC cells. Poly(A)-binding protein cytoplasmic 1 (PABPC1), an RNA-binding protein, was found to enhance the stability of PAK1 mRNA, leading to EMT progress and GC metastasis. PAXIP1-AS1 was found to directly bind to and destabilise PABPC1, thereby regulating EMT and metastasis of GC cells. In summary, PAXIP1-AS1 suppressed metastasis, and the HOXD9/PAXIP1-AS1/PABPC1/PAK1 signalling axis may be involved in the progression of GC.
Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Ciclo Celular , Proliferação de Células/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA , Proteínas de Neoplasias , Proteínas de Homeodomínio/genética , Quinases Ativadas por p21RESUMO
Long non-coding RNAs (lncRNAs) have been implicated in gastric cancer (GC) carcinogenesis and progression. However, the role of LINC00501 in GC growth and metastasis remains unclear. In this study, we found that LINC00501 was frequently upregulated in GC cells and tissues and was closely related to adverse GC clinicopathological features. Aberrant overexpression of LINC00501 promoted GC cell proliferation, invasion, and metastasis both in vitro and in vivo. Mechanistically, LINC00501 stabilized client protein STAT3 from deubiquitylation by directly interacting with cancer chaperone protein HSP90B1. Furthermore, the LINC00501-STAT3 axis modulated GC cell proliferation and metastasis. In turn, STAT3 bound directly to the LINC00501 promoter and positively activated LINC00501 expression, thus forming a positive feedback loop, thereby accelerating tumor growth, invasiveness, and metastasis. In addition, LINC00501 expression was positively correlated with STAT3 and p-STAT3 protein expression levels in gastric clinical samples. Our results reveal that LINC00501 acts as an oncogenic lncRNA and that the LINC00501-HSP90B1-STAT3 positive feedback loop contributes to GC development and progression, suggesting that LINC00501 may be a novel potential biomarker and treatment target for GC.
Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologiaRESUMO
Lung image registration is more challenging than other organs. This is because the breath of the human body causes large deformations in the lung parenchyma and small deformations in tissues such as the pulmonary vascular. Many studies have recently used multi-resolution networks to solve the lung registration problem. However, they use the same structure of registration modules on each level, which makes it difficult to handle complex and small deformations. We propose an unsupervised heterogeneous multi-resolution network (UHMR-Net) to overcome the above problem. The image detail registration module (IDRM) is designed on the highest resolution level. Within this module, the cascaded network is used on the same resolution image to continuously learn the "remaining" detail deformation fields. The shallow shrinkage loss (SS-Loss) is designed to supervise the cascaded network, thus further improving the ability of the network to handle small deformations. Moreover, with the lightweight feature local correlation layer we proposed, the image boundary registration module (IBRM), on multiple low-resolution levels, can better solve the large deformation registration problem. The target registration error on the public DIR-Lab 4DCT dataset was 1.56 ± 1.39 mm, which was significantly better than the classic conventional methods and advanced deep-based methods.
Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Pulmão/diagnóstico por imagem , Tórax , Processamento de Imagem Assistida por Computador/métodosRESUMO
Coffin-Siris syndrome (CSS) 6 is caused by heterozygous pathogenic variants in the AT-rich interaction domain 2 (ARID2) gene on 12q12. Currently, only 26 cases with both detailed clinical and genetic information have been documented in the literature. Microdeletions of the entire ARID2 gene are rare. In this study, we report a 5-year-7-month-old Chinese female who underwent whole-exome sequencing to discover that she had a de novo 1.563 Mb heterozygous copy number loss at 12q12q13.11, involving an entire deletion of ARID2. The female had severe short stature with obvious dysmorphic facial features, global developmental delay and hypoplastic fingers and toes. Her growth hormone level was normal, with reduced IGF-1 and increased CA19-9 levels. After a review of the 27 patients with ARID2 deficiency, a significant positive correlation was observed between age and height standard deviation score (SDS) (r = 0.71, p = 0.0002), suggesting a possibility of growth catch-up. This study expands the genetic and phenotypic spectrum of CCS6 and provides a decision-making reference for growth hormone therapy.
Assuntos
Anormalidades Múltiplas , Nanismo , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Feminino , Humanos , Lactente , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Nanismo/genética , Face/patologia , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Micrognatismo/diagnóstico , Micrognatismo/genética , Micrognatismo/patologia , Pescoço/patologia , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: It is of great clinical significance to find out the ideal tumor biomarkers and therapeutic targets to improve the prognosis of patients with osteosarcoma (OS). Oxidative stress (OXS) can directly target intracellular macromolecules and exhibit dual effects of tumor promotion and suppression. METHODS: OXS-related genes (OXRGs) were extracted from public databases, including TARGET and GEO. Univariate Cox regression analysis, Random Survival Forest algorithm, and LASSO regression were performed to identify prognostic genes and establish the OXS-signature. The efficacy of the OXS-signature was further evaluated by Kaplan-Meier curves and timeROC package. Evaluation of immunological characteristics was achieved based on ESTIMATE algorithm and ssGSEA. Submap algorithm was used to explore the response to anti-PD1 and anti-CTLA4 therapy for OS. Drug response prediction was conducted by using pRRophetic package. The expression values of related genes in the OXS-signature were detected with PCR assays. RESULTS: Two OXS-clusters were identified for OS, with remarkable differences of clusters presented in prognosis. Kyoto Encyclopedia of Genes Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) between the OXS-clusters were significantly enriched in several immune-related pathways. Patients with lower OS-scores attained better clinical outcomes, and presented more sensitivity to ICB therapy. By contrast, OS patients with higher OS-scores revealed more sensitivity to certain drugs. Furthermore, critical genes, RHBDL2 and CGREF1 from the model, were significantly higher expressed in OS cell lines. CONCLUSIONS: Our study identified the clusters and signature based on OXS, which would lay the foundation for molecular experimental research, disease prevention and treatment of OS.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Estresse Oxidativo , Humanos , Algoritmos , Bioensaio , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Osteossarcoma/genética , Estresse Oxidativo/genéticaRESUMO
Chinese fir in China are generally inefficient plantations with single species, unreasonable stand density, and low productivity. The introduction of broadleaved species is usually adopted as a strategy to improve Chinese fir plantations. Taking the pure forests and mixed forests of the Guanshan Forest Farm in Jiangxi Province as example, we quantified the intrinsic water-use efficiency (iWUE) of trees based on the stable isotope carbon method, as well as its response to meteorological factors, and investigated the improvement of stand quality after introducing Phoebe zhennan into Chinese fir plantation. The results showed that the basal area increment was 0.23 cm2 in pure forest, being higher than that of 0.19 cm2 in mixed forest. The δ13C and iWUE of pure forest were -27.4 and 52.9%, respectively, being lower than those of -26.7 and 62.8% in the mixed forest. Tree δ13C in pure forest was more sensitive to changes in mean annual precipitation and mean annual relative humidity, while that in mixed forest was not significantly correlated with meteorological factors. Pure forest iWUE was positively correlated with mean annual temperature, mean annual atmospheric CO2 concentration, and mean annual maximum temperature, and negatively correlated with mean annual precipitation and mean annual relative humidity, while mixed forest iWUE was positively correlated with mean annual atmospheric CO2 concentration only. Our results indicated that pure forests was more sensitive to climate than mixed forests.
Assuntos
Cunninghamia , Água , Dióxido de Carbono , Clima , Florestas , Árvores , TemperaturaRESUMO
Objective: This study analyzed eight Chinese short stature children with aggrecan deficiency, and aimed to investigate potential genotype-phenotype correlations, differences in clinical characteristics between the Chinese and the Western populations, and effectiveness of recombinant human growth hormone therapy in patients with ACAN variants through a review of the literature. Methods: Pediatric short stature patients with ACAN heterozygous variants were identified using whole-exome sequencing. Subsequently, a literature review was carried out to summarize the clinical features, genetic findings, and efficacy of growth-promoting therapy in patients with ACAN variants. Results: We identified seven novel ACAN mutations and one recurrent variant. Patients in our center manifested with short stature (average height SDS: -3.30 ± 0.85) with slight dysmorphic characteristics. The prevalence of dysmorphic features in the Chinese populations is significantly lower than that in the Western populations. Meanwhile, only 24.24% of aggrecan-deficient Chinese children showed significantly advanced bone age (BA). Promising therapeutic benefits were seen in the patients who received growth-promoting treatment, with an increase in growth velocity from 4.52 ± 1.00 cm/year to 8.03 ± 1.16 cm/year. Conclusion: This study further expanded the variation spectrum of the ACAN gene and demonstrated that Chinese children with short stature who carried ACAN heterozygous variants exhibited early growth cessation, which may remain unnoticed by clinicians as most of these children had very mild dysmorphic characteristics and showed BA that was consistent with the chronological age. Genetic testing may help in the diagnosis.
Assuntos
Nanismo , Humanos , Criança , Agrecanas/genética , Heterozigoto , Nanismo/tratamento farmacológico , Nanismo/genética , Povo Asiático/genética , China/epidemiologiaRESUMO
Background: Mild cognitive impairment (MCI) is a transitional stage between normal aging and probable Alzheimer's disease. It is of great value to screen for MCI in the community. A novel machine learning (ML) model is composed of electroencephalography (EEG), eye tracking (ET), and neuropsychological assessments. This study has been proposed to identify MCI subjects from normal controls (NC). Methods: Two cohorts were used in this study. Cohort 1 as the training and validation group, includes184 MCI patients and 152 NC subjects. Cohort 2 as an independent test group, includes 44 MCI and 48 NC individuals. EEG, ET, Neuropsychological Tests Battery (NTB), and clinical variables with age, gender, educational level, MoCA-B, and ACE-R were selected for all subjects. Receiver operating characteristic (ROC) curves were adopted to evaluate the capabilities of this tool to classify MCI from NC. The clinical model, the EEG and ET model, and the neuropsychological model were compared. Results: We found that the classification accuracy of the proposed model achieved 84.5 ± 4.43% and 88.8 ± 3.59% in Cohort 1 and Cohort 2, respectively. The area under curve (AUC) of the proposed tool achieved 0.941 (0.893-0.982) in Cohort 1 and 0.966 (0.921-0.988) in Cohort 2, respectively. Conclusions: The proposed model incorporation of EEG, ET, and neuropsychological assessments yielded excellent classification performances, suggesting its potential for future application in cognitive decline prediction.
RESUMO
Although the abnormal expression of miRNAs in cancer cells is a widely accepted phenomenon, the molecular mechanisms underlying miR-3648 progression and metastasis in gastric cancer (GC) remain unclear. miR-3648 expression is downregulated and its ectopic expression in GC cells significantly suppressed cell proliferation and metastasis. Mechanistic analyses indicated that miR-3648 directly targets FRAT1 or FRAT2 and inhibits FRAT1- or FRAT2-mediated invasion and motility in vitro and in vivo. Moreover, FRAT1 physically interacted with FRAT2. Furthermore, FRAT1 overexpression promoted GC cell invasion, whereas siRNA-mediated repression of FRAT2 in FRAT1-overexpressing GC cells reversed its invasive potential. Besides, miR-3648 inactivated the Wnt/ß-catenin signalling pathway by downregulating FRAT1 and FRAT2 in GC. Interestingly, c-Myc, a downstream effector of Wnt/ß-catenin signalling, was also downregulated by miR-3648 overexpression. In turn, c-Myc negatively regulated miR-3648 expression by binding to the miR-3648 promoter. In addition, miR-3648 expression levels were negatively correlated with c-Myc, FRAT1, and FRAT2 expression in fresh gastric samples. Our studies suggest that miR-3648 acts as a tumour-suppressive miRNA and that the miR-3648/FRAT1-FRAT2/c-Myc negative feedback loop could be a critical regulator of GC progression.
Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , beta Catenina/genética , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Retroalimentação , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genéticaRESUMO
Objective: Preoperative evaluation of cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) has been one of the serious clinical challenges. The present study aims at understanding the relationship between preoperative serum thyroglobulin (PS-Tg) and LNM and intends to establish nomogram models to predict cervical LNM. Methods: The data of 1,324 PTC patients were retrospectively collected and randomly divided into training cohort (n = 993) and validation cohort (n = 331). Univariate and multivariate logistic regression analyses were performed to determine the risk factors of central lymph node metastasis (CLNM) and lateral lymph node metastasis (LLNM). The nomogram models were constructed and further evaluated by 1,000 resampling bootstrap analyses. The receiver operating characteristic curve (ROC curve), calibration curve, and decision curve analysis (DCA) of the nomogram models were carried out for the training, validation, and external validation cohorts. Results: Analyses revealed that age, male, maximum tumor size >1 cm, PS-Tg ≥31.650 ng/ml, extrathyroidal extension (ETE), and multifocality were the significant risk factors for CLNM in PTC patients. Similarly, such factors as maximum tumor size >1 cm, PS-Tg ≥30.175 ng/ml, CLNM positive, ETE, and multifocality were significantly related to LLNM. Two nomogram models predicting the risk of CLNM and LLNM were established with a favorable C-index of 0.801 and 0.911, respectively. Both nomogram models demonstrated good calibration and clinical benefits in the training and validation cohorts. Conclusion: PS-Tg level is an independent risk factor for both CLNM and LLNM. The nomogram based on PS-Tg and other clinical characteristics are effective for predicting cervical LNM in PTC patients.