Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int Immunopharmacol ; 137: 112420, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851159

RESUMO

OBJECTIVES: This study aimed to explore the underlying mechanisms of sepsis and acute kidney injury (AKI), including sepsis-associated AKI (SA-AKI), a frequent complication in critically ill sepsis patients. METHODS: GWAS data was analyzed for genetic association between AKI and sepsis. Then, we systematically applied three distinct machine learning algorithms (LASSO, SVM-RFE, RF) to rigorously identify and validate signature genes of SA-AKI, assessing their diagnostic and prognostic value through ROC curves and survival analysis. The study also examined the functional and immunological aspects of these genes, potential drug targets, and ceRNA networks. A mouse model of sepsis was created to test the reliability of these signature genes. RESULTS: LDSC confirmed a positive genetic correlation between AKI and sepsis, although no significant shared loci were found. Bidirectional MR analysis indicated mutual increased risks of AKI and sepsis. Then, 311 key genes common to sepsis and AKI were identified, with 42 significantly linked to sepsis prognosis. Six genes, selected through LASSO, SVM-RFE, and RF algorithms, showed excellent predictive performance for sepsis, AKI, and SA-AKI. The models demonstrated near-perfect AUCs in both training and testing datasets, and a perfect AUC in a sepsis mouse model. Significant differences in immune cells, immune-related pathways, HLA, and checkpoint genes were found between high- and low-risk groups. The study identified 62 potential drug treatments for sepsis and AKI and constructed a ceRNA network. CONCLUSIONS: The identified signature genes hold potential clinical applications, including prognostic evaluation and targeted therapeutic strategies for sepsis and AKI. However, further research is needed to confirm these findings.

2.
J Neuroinflammation ; 21(1): 131, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760784

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS: A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1ß, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS: Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1ß and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION: This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.


Assuntos
Camundongos Endogâmicos C57BL , Orexinas , Encefalopatia Associada a Sepse , Animais , Camundongos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Orexinas/metabolismo , Masculino , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Administração Intranasal
3.
J Cell Mol Med ; 28(9): e18318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685674

RESUMO

Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.


Assuntos
Proliferação de Células , Ferroptose , Glioblastoma , Ferro , Orexinas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Humanos , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Orexinas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética
4.
iScience ; 27(4): 109317, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500821

RESUMO

In glioma molecular subtyping, existing biomarkers are limited, prompting the development of new ones. We present a multicenter study-derived consensus immune-related and prognostic gene signature (CIPS) using an optimal risk score model and 101 algorithms. CIPS, an independent risk factor, showed stable and powerful predictive performance for overall and progression-free survival, surpassing traditional clinical variables. The risk score correlated significantly with the immune microenvironment, indicating potential sensitivity to immunotherapy. High-risk groups exhibited distinct chemotherapy drug sensitivity. Seven signature genes, including IGFBP2 and TNFRSF12A, were validated by qRT-PCR, with higher expression in tumors and prognostic relevance. TNFRSF12A, upregulated in GBM, demonstrated inhibitory effects on glioma cell proliferation, migration, and invasion. CIPS emerges as a robust tool for enhancing individual glioma patient outcomes, while IGFBP2 and TNFRSF12A pose as promising tumor markers and therapeutic targets.

5.
Heliyon ; 10(3): e24849, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317990

RESUMO

Whether receptor activity-modifying proteins (RAMPs) play a key role in human cancer prognosis and immunity remains unknown. We used data from the public databases, The Cancer Genome Atlas, Therapeutically Applicable Research to Generate Effective Treatments, and the Genotype-Tissue Expression project. We utilized bioinformatics methods, R software, and a variety of online databases to analyze RAMPs. In general, RAMPs were significantly and differentially expressed in multiple tumors, and RAMP expression was closely associated with prognosis, immune checkpoints, RNA-editing genes, tumor mutational burden, microsatellite instability, ploidy, and stemness indices. In addition, the expression of RAMPs is strongly correlated with tumor-infiltrating lymphocytes in human cancers. Moreover, the RAMP co-expression network is largely involved in many immune-related biological processes. Quantitative reverse transcription polymerase chain reaction and Western blot proved that RAMP3 was highly expressed in glioma, and RAMP3 promoted tumor proliferation and migration. RAMPs exhibit potential as prognostic and immune-related biomarkers in human cancers. Moreover, RAMPs can be potentially developed as therapeutic targets or used to enhance the efficacy of immunotherapy.

6.
Heliyon ; 10(1): e23511, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38230242

RESUMO

The disheveled-associated antagonist of ß-catenin homolog 3 (DACT3) has been recognized as a tumor suppressor in various cancers. However, the function of DACT3 on glioma malignant progression along with potential molecular mechanisms is poorly clarified. This research aimed to investigate how DACT3 contributes to suppressing the progression of glioma. In our investigation, a pronounced decrease in DACT3 expression was observed in glioma tissues. Through the overexpression of DACT3, we noted a significant suppression in the proliferation, invasion, and migration of glioma cells, while concurrently observing an increase in cell adhesion. Our exploration into the molecular mechanisms revealed that DACT3 executes its tumor-suppressive role by impeding the expression of notch 1 intracellular domain (NICD) and translocating into the nucleus by downregulating the expression of ß-catenin. Consequently, this process leads to the suppression of Notch1 signaling. To summarize, our findings reveal the function of DACT3 to inhibit glioma progression via the Notch1 signaling pathway in ß-catenin dependent manner. This study stands as the pioneer in examining the role of DACT3 in glioma progression and comprehensively elucidating its molecular mechanisms in glioma development. Therefore, our results suggest that DACT3 holds promise as both a prognostic factor and a potential biomarker for guiding treatment strategies in glioma patients (Graphical Abstract).

7.
J Transl Med ; 22(1): 10, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167131

RESUMO

BACKGROUND: Gut microbiota alterations have been implicated in sepsis and related infectious diseases, but the causal relationship and underlying mechanisms remain unclear. METHODS: We evaluated the association between gut microbiota composition and sepsis using two-sample Mendelian randomization (MR) analysis based on published genome-wide association study (GWAS) summary statistics. Sensitivity analyses were conducted to validate the robustness of the results. Reverse MR analysis and integration of GWAS and expression quantitative trait loci (eQTL) data were performed to identify potential genes and therapeutic targets. RESULTS: Our analysis identified 11 causal bacterial taxa associated with sepsis, with increased abundance of six taxa showing positive causal relationships. Ten taxa had causal effects on the 28-day survival outcome of septic patients, with increased abundance of six taxa showing positive associations. Sensitivity analyses confirmed the robustness of these associations. Reverse MR analysis did not provide evidence of reverse causality. Integration of GWAS and eQTL data revealed 76 genes passing the summary data-based Mendelian randomization (SMR) test. Differential expression of these genes was observed between sepsis patients and healthy individuals. These genes represent potential therapeutic targets for sepsis. Molecular docking analysis predicted potential drug-target interactions, further supporting their therapeutic potential. CONCLUSION: Our study provides insights for the development of personalized treatment strategies for sepsis and offers preliminary candidate targets and drugs for future drug development.


Assuntos
Microbioma Gastrointestinal , Sepse , Humanos , Microbioma Gastrointestinal/genética , Farmacologia em Rede , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Simulação de Acoplamento Molecular , Sepse/genética , Análise de Sequência de RNA
9.
Biomed Pharmacother ; 168: 115840, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931516

RESUMO

BACKGROUND: Hypothalamic neuroinflammation is associated with disorders of lipid metabolism. Considering the anti-neuroinflammation effects of sodium-glucose cotransporter 2(SGLT2) inhibitors, a central administration of Dapagliflozin is postulated to provide hypothalamic protection and change lipid metabolism in kidney against diabetic kidney disease (DKD). METHODS: Blood samples of DKD patients were collected. Male Sprague-Dawley (SD) rats with 30 mg/kg streptozotocin and a high-fat diet, db/db mice and palmitic acid (PA)-stimulated BV2 microglia were used for study models. 0.28 mg/3ul dapagliflozin was injected into the lateral ventricle in db/db mice. Genes and protein expression levels were determined by qPCR, western blotting, immunofluorescence, and immunohistochemistry staining. Secreted IL-1ß and IL-6 were quantified by ELISA. Oil red O staining, lipidomic, and non-targeted metabolomics were performed to evaluate abnormal lipid metabolism in kidney. RESULTS: The decrease of serum MCPIP1 was an independent risk factor for renal progression in DKD patients (OR=1.22, 95 %CI: 1.02-1.45, P = 0.033). Higher microglia marker IBA1 and lower MCPIP1 in the hypothalamus, as well as lipid droplet deposition increasing in the kidney were observed in DKD rats. Central dapagliflozin could reduce the blood sugar, hypothalamic inflammatory cytokines, lipid droplet deposition in renal tubular. Lipidomics and metabolomics results showed that dapagliflozin changed 37 lipids and 19 metabolites considered on promoting lipolysis. These lipid metabolism changes were attributed to dapagliflozin by upregulating MCPIP1, and inhibiting cytokines in the microglia induced by PA. CONCLUSIONS: Central administrated Dapagliflozin elicits an anti-inflammatory effect by upregulating MCPIP1 levels in microglia and changes lipid metabolism in kidney of DKD.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Camundongos , Masculino , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Doenças Neuroinflamatórias , Metabolismo dos Lipídeos , Ratos Sprague-Dawley , Rim , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Citocinas/metabolismo
10.
Synth Syst Biotechnol ; 8(4): 606-609, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37753197

RESUMO

Adoptive transfer of T cells engineered with chimeric antigen receptor (CAR) has been proved to have robust anti-tumor effects against hematological malignancies. However, problems about safety and efficacy, such as cytokine release syndrome (CRS), T cell exhaustion and antigen escape are still raised when patients are treated with CAR-T cells. Moreover, CAR-T therapy has limited applications in treating solid tumors, owing to inefficient infiltration and poor functional persistence of CAR-T cells and diverse immunosuppression in tumor microenvironment. In order to overcome these limitations and broad its applications, multiple controllable CAR-T technologies were exploited. In this article, we review the designs of intelligent controlled CAR-T technologies and the innovations that they bring about in recent years.

11.
Heliyon ; 9(8): e18490, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576252

RESUMO

The past decades have witnessed great progress in nanoparticle-based cancer-targeting drug delivery systems, but their therapeutic potentials is yet to be fully exploited. In this research, temozolomide (TMZ) and chloroquine (CQ) were loaded into the mesoporous silica nanoparticles (MSNs), the surface was coated with polydopamine (PDA), and the complex was coupled with arginine-glycine-aspartic (RGD) to successfully prepare TMZ/CQ@MSN-RGD. RGD-MSNs accumulated more in the cell and tumor models than in unmodified MSNs in the in vitro and in vivo experiments and can directly induce apoptosis and autophagy in tumor cells. In addition, TMZ/CQ@MSN-RGD therapy enhanced the apoptosis effect of the RGD-MSNs in glioma. Therefore, the combination of autophagy inhibitor with chemotherapy drugs in nanocarriers may promote therapeutic efficacy in treating glioma.

12.
EClinicalMedicine ; 60: 102010, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37251628

RESUMO

Background: Thus far, all approved chimeric antigen receptor (CAR)-T products are manufactured using modified viruses, which increases the risk of tumorigenesis, costs and production time. We aimed to evaluate the safety and efficacy of a kind of virus-free CAR-T cells (PD1-19bbz), in which an anti-CD19 CAR sequence is specifically integrated at the PD1 locus using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, in adults with relapsed/refractory (r/r) B cell non-Hodgkin's lymphoma (B-NHL). Methods: This single-arm phase I dose-escalation clinical trial evaluated PD1-19bbz in adult patients with r/r B-NHL from May 3rd 2020 to August 10th 2021. The patients were recruited and treated at the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. Patients underwent leukapheresis and lymphodepleting chemotherapy before PD1-19bbz infusion. After the dose-escalation phase including three cohorts: 2 × 106/kg, 4 × 106/kg, 6 × 106/kg with three patients at each dose level, the optimal biological dose was determined to be 2 × 106/kg, which was then applied to an extended cohort of nine patients. The primary endpoint was the incidence of dose-limiting toxicities (DLT). The secondary endpoint was the response and survival. This trial was registered at www.clinicaltrials.gov as #NCT04213469. Findings: Twenty-one patients received PD1-19bbz infusion. Among all treated patients, 19 (90%) patients were diagnosed with stage III or IV disease. Meanwhile, 19 (90%) were stratified as intermediate risk or worse. Of note, four participants had >50% programmed death ligand-1 (PD-L1) expression in pre-treatment tumour sample, including two with extremely high levels (∼80%). There was no DLT identified. Fourteen patients had low-grade (1-2) cytokine release syndrome and two patients received tocilizumab. Four patients experienced immune effector cell-associated neurotoxicity syndrome of grade 1-2. The most common adverse events were hematologic toxicities, including anaemia (n = 6), lymphocyte count decreased (n = 19), neutrophil count decreased (n = 17), white blood cell count decreased (n = 10), and platelet count decreased (n = 2). All patients had objective response and 18 patients reached complete response. At a median follow-up of 19.2 months, nine patients remained in remission, and the estimated median progression-free survival duration was 19.5 months (95% confidence interval: 9.9-infinity), with the median overall survival not reached. Interpretation: In this first-in-human study of non-viral specifically integrated CAR-T products, PD1-19bbz exhibited promising efficacy with a manageable toxicity profile. A phase I/II trial of PD1-19bbz in a larger patient cohort is underway. Funding: National Key R&D Program of China, National Natural Science Foundation of China, Key Project of Science and Technology Department of Zhejiang Province, Shanghai Zhangjiang National Independent Innovation Demonstration Area, Key Projects of Special Development Funds.

13.
Brain Res Bull ; 196: 46-58, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925051

RESUMO

Hypocretin-1 is a multifunctional neuropeptide that has been identified as a potential antitumor agent for its role in inhibiting tumor growth, including in colon cancer, neuroendocrine tumor, and prostate cancer. However, the role and mechanism of hypocretin-1 in the occurrence and development of malignant glioma have not been well studied. Therefore, we investigated the effect of hypocretin-1 on glioblastoma proliferation, apoptosis, migration and invasion and its mechanism. We found that the hypocretin-1 receptor was expressed in both glioma cell lines and glioma tissues. Hypocretin-1 treatment can inhibit glioblastoma cell proliferation, migration and invasion, and induce cell apoptosis. Meanwhile, hypocretin-1 treatment significantly reduces tumor growth rate and tumor weight. In addition, mechanistic studies have found that hypocretin-1 exerts antitumor effects by inhibiting NOTCH signaling pathway. Overexpression of NICD significantly reversed the antitumor effect of hypocretin on glioblastoma. Taken together, these findings suggest that hypocretin-1 inhibits glioblastoma proliferation, migration and invasion and induces apoptosis in vitro and in vivo through NOTCH signaling pathway.


Assuntos
Glioblastoma , Glioma , Masculino , Humanos , Glioblastoma/patologia , Orexinas/farmacologia , Movimento Celular , Transdução de Sinais , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Receptor Notch1/metabolismo
14.
Front Pharmacol ; 14: 1096159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744263

RESUMO

Objectives: This study involved a multi-omics analysis of glioblastoma (GBM) samples to elaborate the potential mechanism of drug treatment. Methods: The GBM cells treated with or without orexin A were acquired from sequencing analysis. Differentially expressed genes/proteins/metabolites (DEGs/ DEPs/ DEMs) were screened. Next, combination analyses were conducted to investigate the common pathways and correlations between the two groups. Lastly, transcriptome-proteome-metabolome association analysis was carried out to determine the common pathways, and the genes in these pathways were analyzed through Kaplan-Meier (K-M) survival analysis in public databases. Cell and animal experiments were performed to investigate the anti-glioma activity of orexin A. Results: A total of 1,527 DEGs, 52 DEPs, and 153 DEMs were found. Moreover, the combination analyses revealed that 6, 4, and 1 common pathways were present in the transcriptome-proteome, proteome-metabolome, and transcriptome-metabolome, respectively. Certain correlations were observed between the two data sets. Finally, 11 common pathways were discovered in association analysis, and 138 common genes were screened out in these common pathways. Six genes showed significant differences in terms of survival in both TCGA and CGGA. In addition, orexin A inhibited the proliferation, migration, and invasion of glioma in vitro and in vivo. Conclusion: Eleven common KEGG pathways with six common genes were found among different omics participations, revealing the underlying mechanisms in different omics and providing theoretical basis and reference for multi-omics research on drug treatment.

15.
Front Immunol ; 14: 1090288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817492

RESUMO

Introduction: Sepsis-associated encephalopathy (SAE) is a diffuse cerebral dysfunction resulting from a systemic inflammatory response to infection; however, its pathophysiology remains unclear. Sepsis-induced neuroinflammation and blood-brain barrier (BBB) disruption are crucial factors in brain function disturbance in SAE. Mast cells (MCs) activation plays an important role in several neuroinflammation models; however, its role in SAE has not been comprehensively investigated. Methods: We first established a SAE model by cecal ligation puncture (CLP) surgery and checked the activation of MCs. MCs activation was checked using immumohistochemical staining and Toluidine Blue staining. We administrated cromolyn (10mg/ml), a MC stabilizer, to rescue the septic mice. Brain cytokines levels were measured using biochemical assays. BBB disruption was assessed by measuring levels of key tight-junction (TJ) proteins. Cognitive function of mice was analyzed by Y maze and open field test. Transwell cultures of brain microvascular endothelial cells (BMVECs) co-cultured with MCs were used to assess the interaction of BMVECs and MCs. Results: Results showed that MCs were overactivated in the hippocampus of CLP-induced SAE mice. Cromolyn intracerebroventricular (i.c.v) injection substantially inhibited the MCs activation and neuroinflammation responses, ameliorated BBB impairment, improved the survival rate and alleviated cognitive dysfunction in septic mice. In vitro experiments, we revealed that MCs activation increased the sensitivity of BMVECs against to lipopolysaccharide (LPS) challenge. Furthermore, we found that the histamine/histamine 1 receptor (H1R) mediated the interaction between MCs and BMVECs, and amplifies the LPS-induced inflammatory responses in BMVECs by modulating the TLR2/4-MAPK signaling pathway. Conclusions: MCs activation could mediate BBB impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway.


Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Histamina/metabolismo , Células Endoteliais/metabolismo , Mastócitos/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Cromolina Sódica/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Sepse/metabolismo , Disfunção Cognitiva/metabolismo , Proteínas de Junções Íntimas/metabolismo
16.
Mol Ther ; 31(3): 744-759, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457249

RESUMO

Editing efficiency is pivotal for the efficacies of CRISPR-based gene therapies. We found that fusing an HMG-D domain to the N terminus of SpCas9 (named efficiency-enhanced Cas9 [eeCas9]) significantly increased editing efficiency by 1.4-fold on average. The HMG-D domain also enhanced the activities of non-NGG PAM Cas9 variants, high-fidelity Cas9 variants, smaller Cas9 orthologs, Cas9-based epigenetic regulators, and base editors in cell lines. Furthermore, we discovered that eeCas9 exhibits comparable off-targeting effects with Cas9, and its specificity could be increased through ribonucleoprotein delivery or using hairpin single-guide RNAs and high-fidelity Cas9s. The entire eeCas9 could be packaged into an adeno-associated virus vector and exhibited a 1.7- to 2.6-fold increase in editing efficiency targeting the Pcsk9 gene in mice, leading to a greater reduction of serum cholesterol levels. Moreover, the efficiency of eeA3A-BE3 also surpasses that of A3A-BE3 in targeting the promoter region of γ-globin genes or BCL11A enhancer in human hematopoietic stem cells to reactivate γ-globin expression for the treatment of ß-hemoglobinopathy. Together, eeCas9 and its derivatives are promising editing tools that exhibit higher activity and therapeutic efficacy for both in vivo and ex vivo therapeutics.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Animais , Humanos , Camundongos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , gama-Globinas/genética , Terapia Genética
17.
Cancer Immunol Res ; 11(1): 93-108, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265009

RESUMO

The engagement of the T-cell receptor (TCR) by a specific peptide-MHC ligand initiates transmembrane signaling to induce T-cell activation, a key step in most adaptive immune responses. Previous studies have indicated that TCR signaling is tightly regulated by cholesterol and its sulfate metabolite, cholesterol sulfate (CS), on the membrane. Here, we report a novel mechanism by which CS modulates TCR signaling through a conformational change of CD3 subunits. We found that the negatively charged CS interacted with the positively charged cytoplasmic domain of CD3ε (CD3εCD) to enhance its binding to the cell membrane and induce a stable secondary structure. This secondary structure suppressed the release of CD3εCD from the membrane in the presence of Ca2+, which in turn inhibited TCR phosphorylation and signaling. When a point mutation (I/A) was introduced to the intracellular immunoreceptor tyrosine-based activation motifs (YxxI-x6-8-YxxL) of CD3ε subunit, it reduced the stability of the secondary structure and regained sensitivity to Ca2+, which abolished CS-mediated inhibition and enhanced the signaling of the TCR complex. Notably, the I/A mutation could be applied to both murine and human TCR-T cell therapy to improve the antitumor efficacy. Our study reveals insights into the regulatory mechanism of TCR signaling and provides a strategy to functionally engineer the TCR/CD3 complex for T cell-based cancer immunotherapy.


Assuntos
Cálcio , Linfócitos T , Animais , Humanos , Camundongos , Cálcio/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo CD3/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Fosforilação , Lipídeos/análise
18.
Exp Biol Med (Maywood) ; 248(23): 2273-2288, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38166412

RESUMO

N6-methyladenosine (m6A) RNA methylation plays a pivotal role in immune responses and the onset and advancement of cancer. Nonetheless, the precise impact of m6A modification in lung adenocarcinoma (LUAD) and its associated tumor microenvironment (TME) remains to be fully elucidated. Here, we distinguished distinct m6A modification patterns within two separate LUAD cohorts using a set of 21 m6A regulators. The TME characteristics associated with these two patterns align with the immune-inflamed and immune-excluded phenotypes, respectively. We identified 2064 m6A-related genes, which were used as a basis to divide all LUAD samples into three distinct m6A gene clusters. We applied a scoring system to evaluate the m6A gene signature of the m6A modification pattern in individual patients. To authenticate the categorization significance of m6A modification patterns, we established a correlation between m6A score and TME infiltration profiling, tumor somatic mutations, and responses to immunotherapy. A high level of m6A modification may be associated with the aggressiveness and poor prognosis of LUAD. Further studies should investigate the mechanism of action of m6A regulators and m6A-related genes to improve the diagnosis and treatment of patients with LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Microambiente Tumoral/genética , Adenocarcinoma de Pulmão/genética , Adenina , Neoplasias Pulmonares/genética
19.
Cancer Cell ; 40(11): 1264-1266, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379203

RESUMO

In this issue of Cancer Cell, Li et al. develop novel tunable ON/OFF switch chimeric antigen receptor (CAR) circuits using clinically approved drugs based on the viral NS3 protease system. These platforms not only show superior controllability but also have high performance and compatibility, thereby providing versatile tools for precisely modulating CAR-T cells.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Imunoterapia Adotiva
20.
Nature ; 609(7926): 369-374, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045296

RESUMO

Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1-7. However, CAR-T cell therapy currently has several limitations8-12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specific targeted CAR-T cells through CRISPR-Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469 ), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were effective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efficacy of non-viral, gene-specific integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy.


Assuntos
Imunoterapia Adotiva , Linfoma de Células B , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19/imunologia , Eletroporação , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Linfoma de Células B/terapia , Células T de Memória/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Recidiva , Análise de Célula Única , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA