Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 223: 116173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552849

RESUMO

Pyroptosis, a novel programmed cell death mediated by NOD-like receptor protein 3 (NLRP3) inflammasome, is a critical pathogenic process in acute viral myocarditis (AVMC). Mitsugumin 53 (MG53) is predominantly expressed in myocardial tissues and has been reported to exert cardioprotective effects through multiple pathways. Herein, we aimed to investigate the biological function of MG53 in AVMC and its underlying regulatory mechanism in pyroptosis. BALB/c mice and HL-1 cells were infected with Coxsackievirus B3 (CVB3) to establish animal and cellular models of AVMC. As inflammation progressed in the myocardium, we found a progressive decrease in myocardial MG53 expression, accompanied by a significant enhancement of cardiomyocyte pyroptosis. MG53 overexpression significantly alleviated myocardial inflammation, apoptosis, fibrosis, and mitochondrial damage, thereby improving cardiac dysfunction in AVMC mice. Moreover, MG53 overexpression inhibited NLRP3 inflammasome-mediated pyroptosis, reduced pro-inflammatory cytokines (IL-1ß/18) release, and suppressed NF-κB signaling pathway activation both in vivo and in vitro. Conversely, MG53 knockdown reduced cell viability, facilitated cell pyroptosis, and increased pro-inflammatory cytokines release in CVB3-infected HL-1 cells by promoting NF-κB activation. These effects were partially reversed by applying the NF-κB inhibitor BAY 11-7082. In conclusion, our results suggest that MG53 acts as a negative regulator of NLRP3 inflammasome-mediated pyroptosis in CVB3-induced AVMC, partially by inhibiting the NF-κB signaling pathway. MG53 is a promising candidate for clinical applications in AVMC treatment.


Assuntos
Miocardite , Animais , Camundongos , Citocinas/metabolismo , Inflamassomos/metabolismo , Inflamação , Proteínas de Membrana , Miocardite/prevenção & controle , Miocardite/metabolismo , Miocardite/patologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Piroptose , Transdução de Sinais
2.
CNS Neurosci Ther ; 30(1): e14486, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37830170

RESUMO

AIMS: Dexmedetomidine (DEX) has been reported to alleviate hypoxic-ischemic brain damage (HIBD) in neonates. This study aimed to investigate whether DEX improves cognitive impairment by promoting hippocampal neurogenesis via the BDNF/TrkB/CREB signaling pathway in neonatal rats with HIBD. METHODS: HIBD was induced in postnatal day 7 rats using the Rice-Vannucci method, and DEX (25 µg/kg) was administered intraperitoneally immediately after the HIBD induction. The BDNF/TrkB/CREB pathway was regulated by administering the TrkB receptor antagonist ANA-12 through intraperitoneal injection or by delivering adeno-associated virus (AAV)-shRNA-BDNF via intrahippocampal injection. Western blot was performed to measure the levels of BDNF, TrkB, and CREB. Immunofluorescence staining was utilized to identify the polarization of astrocytes and evaluate the levels of neurogenesis in the dentate gyrus of the hippocampus. Nissl and TTC staining were performed to evaluate the extent of neuronal damage. The MWM test was conducted to evaluate spatial learning and memory ability. RESULTS: The levels of BDNF and neurogenesis exhibited a notable decrease in the hippocampus of neonatal rats after HIBD, as determined by RNA-sequencing technology. Our results demonstrated that treatment with DEX effectively increased the protein expression of BDNF and the phosphorylation of TrkB and CREB, promoting neurogenesis in the dentate gyrus of the hippocampus in neonatal rats with HIBD. Specifically, DEX treatment significantly augmented the expression of BDNF in hippocampal astrocytes, while decreasing the proportion of detrimental A1 astrocytes and increasing the proportion of beneficial A2 astrocytes in neonatal rats with HIBD. Furthermore, inhibiting the BDNF/TrkB/CREB pathway using either ANA-12 or AAV-shRNA-BDNF significantly counteracted the advantageous outcomes of DEX on hippocampal neurogenesis, neuronal survival, and cognitive improvement. CONCLUSIONS: DEX promoted neurogenesis in the hippocampus by activating the BDNF/TrkB/CREB pathway through the induction of polarization of A1 astrocytes toward A2 astrocytes, subsequently mitigating neuronal damage and cognitive impairment in neonates with HIBD.


Assuntos
Disfunção Cognitiva , Dexmedetomidina , Hipóxia-Isquemia Encefálica , Ratos , Animais , Animais Recém-Nascidos , Ratos Sprague-Dawley , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Transdução de Sinais , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , RNA Interferente Pequeno/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Neurogênese
3.
Clin Rheumatol ; 42(11): 3113-3121, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37695380

RESUMO

OBJECTIVE: Numerous immune cell types, such as B and T lymphocytes, natural killer cells (NK), and NKT cells, are related to the pathogenesis of diseases in systemic lupus erythematosus (SLE). Our goal in this investigation is to examine the phenotype of NK cells and NKT cells alterations in individuals with SLE. METHODS: Typically, 50 SLE patients and 24 age-matched healthy people had their PBMCs obtained. Employing flow cytometry, the phenotype of NK and NKT cells and immunoglobulin-like transcript 2 (ILT2) expressions were identified. ELISA was utilized to evaluate the amounts of interleukin-15 (IL-15) and sHLA-G in the serum. RESULTS: The frequencies of the circulating NK and NKT cells in individuals with SLE were decreased compared to healthy controls. Furthermore, ILT2 expression was significantly increased in NKT cells, but showed no obvious change in NK cells. Clinical severity and active nephritis were substantially associated with ILT2+ NKT cell frequencies. The correlation study showed that the upregulation of ILT2 expression was related to sHLA-G in plasma but not to IL-15. CONCLUSIONS: ILT2+ NKT cells have a vital function in the immune abnormalities of SLE, which can also supply a viable goal for therapeutic intervention. Key Points •ILT2 expression was significantly increased in NKT cells in SLE patients. •ILT2+ NKT cell frequencies were associated with clinical severity which may be used as an indicator for evaluating disease activity in patients with SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Células T Matadoras Naturais , Nefrite , Humanos , Células T Matadoras Naturais/metabolismo , Células T Matadoras Naturais/patologia , Interleucina-15/metabolismo , Interleucina-15/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Células Matadoras Naturais
4.
J Med Virol ; 95(2): e28473, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606604

RESUMO

Acute viral myocarditis (AVMC) is a common acute myocardial inflammation caused by viral infections, which can lead to severe cardiac dysfunction. Several long noncoding RNAs (lncRNAs) with aberrant expression have been identified in the pathogenesis of AVMC. However, the expression profiles and functions of lncRNAs in AVMC have not been fully elucidated. In the present study, we constructed AVMC mouse models by intraperitoneal injection of coxsackievirus B3 (CVB3) and performed RNA sequencing (RNA-seq) on heart tissues to investigate the differences in lncRNAs and messenger RNAs (mRNAs) expression profiles. Based on the cutoff criteria of adjusted p-values (padj) <0.05 and |log2FoldChange| >1, a total of 1122 differentially expressed lncRNAs (DElncRNAs) and 3186 differentially expressed mRNAs (DEmRNAs) were screened, including 734 upregulated and 388 downregulated lncRNAs, 1821 upregulated and 1365 downregulated mRNAs. RT-qPCR analysis validated that the expression patterns of 12 randomly selected genes (6 DElncRNAs and 6 DEmRNAs) were highly consistent with those in RNA-seq, proving the reliability of the RNA-seq data. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed genes were mainly involved in metabolic and immune-related processes. Furthermore, co-expression networks between DElncRNAs and DEmRNAs in cytokine-cytokine receptor interaction, MAPK signaling pathway, and PI3K-Akt signaling pathway were constructed to study the molecular interactions of these molecules. Our study, for the first time, reveals the expression profiles of lncRNAs and mRNAs associated with AVMC, which may shed light on the roles of lncRNAs in disease pathogenesis and aid in discovering new therapeutic targets.


Assuntos
Miocardite , RNA Longo não Codificante , Camundongos , Animais , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Fosfatidilinositol 3-Quinases , Reprodutibilidade dos Testes , RNA Mensageiro/genética
5.
Inflamm Res ; 71(12): 1559-1576, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36301340

RESUMO

BACKGROUND: Myocardial inflammation and apoptosis are key processes in coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC). Accumulating evidence reveals the essential roles of long noncoding RNAs (lncRNAs) in the pathogenesis of AVMC. Here, we aimed to evaluate the biological functions of a novel lncRNA guanylate-binding protein 9 (lncGBP9) in AVMC progression and further explore its underlying mechanisms. METHODS: Initially, mouse models of AVMC were constructed by CVB3 infection. The expression and localization of lncGBP9 in heart tissues were analyzed using RT-qPCR and FISH. Adeno-associated virus serotype 9 (AAV9)-mediated lncGBP9 knockdown was then employed to clarify its roles in survival, cardiac function, and myocardial inflammation and apoptosis. Moreover, the mRNA and protein levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) were detected by RT-qPCR and ELISA, and the regulation of lncGBP9 knockdown on the NF-κB signaling pathway was investigated by Western blotting. Using an in vitro model of HL-1 cardiomyocytes exposed to CVB3 infection, the effects of lncGBP9 knockdown on cell viability, inflammation, and apoptosis were further evaluated in vitro. RESULTS: Increased lncGBP9 expression was detected in the heart tissues of AVMC mice and CVB3-infected HL-1 cells, and was mainly located in the cytoplasm. Knockdown of lncGBP9 remarkably alleviated the severity of AVMC in CVB3-infected mice, as verified by improved cardiac function, and reduced myocardial inflammation and apoptosis. Additionally, lncGBP9 knockdown suppressed the NF-κB signaling pathway and consequently reduced productions of pro-inflammatory cytokines in vivo. In vitro functional assays further confirmed that lncGBP9 knockdown promoted cell viability, inhibited cell apoptosis, and reduced pro-inflammatory cytokines release in CVB3-infected HL-1 cells through suppressing NF-κB activation. CONCLUSIONS: Collectively, lncGBP9 knockdown exerts anti-inflammatory and anti-apoptotic effects in CVB3-induced AVMC, which may be mediated in part via NF-κB signaling pathway. These findings highlight lncGBP9 as an attractive target for therapeutic interventions.


Assuntos
Infecções por Coxsackievirus , Miocardite , Camundongos , Animais , Miocardite/genética , NF-kappa B/metabolismo , Enterovirus Humano B/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Transdução de Sinais , Inflamação/metabolismo , Apoptose , Citocinas/metabolismo , Camundongos Endogâmicos BALB C
6.
Cells ; 12(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36611865

RESUMO

Acute pancreatitis (AP) is an inflammatory disease of the pancreas. A growing number of studies have shown that long noncoding RNAs (lncRNAs) play an important role in AP progression. Here, we aimed to elucidate the role of Small Nucleolar RNA Host Gene 11(SNHG11) and its underlying molecular mechanisms behind AP progression. The in vivo and in vitro AP cell models were established by retrograde injection of sodium taurocholate and caerulein stimulation into AR42J cells and HPDE6-C7 cells, respectively. A bioinformatics website predicted the relationship between SNHG11, miR-7-5p, and Phospholipase C Beta 1(PLCB1) and validated it with a dual-luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. AR42J cells and HPDE6-C7 cells were transfected with an overexpression of plasmids or shRNA to investigate the effects of the SNHG11/miR-7-5p/PLCB1 axis on cell proliferation and apoptosis, inflammatory cytokine secretion, and acute pancreatitis. Low expression of SNHG11 and PLCB1 and high expression of miR-7-5p were observed in AP pancreatic tissue and AP cell models. SNHG11 overexpression inhibited apoptosis and inflammatory responses induced by caerulein. Simultaneously, we discovered that SNHG11 regulates PLCB1 expression by sponging miR-7-5p. PLCB1 overexpression abrogated inflammatory damage exacerbated by miR-7-5p enrichment. In addition, the SNHG11/miR-7-5p/PLCB1 axis could be involved in caerulein-induced inflammatory injury by participating in the p38MAPK signaling pathway. The overexpressed SNHG11/miR-7-5p/PLCB1 axis can inhibit AP progression by participating in the p38MAPK signaling pathway, thereby providing a potential therapeutic target and therapeutic direction for AP therapy.


Assuntos
MicroRNAs , Pancreatite , Humanos , Doença Aguda , Ceruletídeo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno , Pancreatite/induzido quimicamente , Pancreatite/genética , Fosfolipase C beta , RNA Longo não Codificante/genética
7.
Metab Brain Dis ; 36(5): 969-981, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33608831

RESUMO

Intrauterine growth restriction (IUGR) affects brain neural stem cell (NSC) differentiation. In the present study, we investigated whether taurine supplementation may improve NSC differentiation in IUGR fetal rats via the protein kinase A-cyclic adenosine monophosphate (cAMP) response element protein-brain derived neurotrophic factor (PKA-CREB-BDNF) signaling pathway. The IUGR fetal rat model was established with a low-protein diet. Fresh subventricular zone (SVZ) tissue from the fetuses on the 14th day of pregnancy was microdissected and dissociated into single-cell suspensions, then was cultured to form neurospheres. The neurospheres were divided into the control group, the IUGR group, the IUGR+taurine (taurine) group, the IUGR+H89 (H89) group and the IUGR+taurine+H89 (taurine+H89) group. The mRNA and protein expression levels of PKA, CREB and BDNF were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB). Tuj-1-positive neurons and GFAP-positive glial cells were detected by immunofluorescence. The total number of proliferating NSCs and the percentage of Tuj-1-positive neurons in the IUGR group were lower than those in the control group, but the percentage of GFAP-positive cells was higher in the IUGR group than in the control group. Taurine supplementation increased the total number of neural cells and the percentage of Tuj-1-positive neurons, and reduced the percentage of GFAP-positive cells among differentiated NSCs after IUGR. H89 reduced the total number and percentage of Tuj-1-positive neurons and increased the percentage of GFAP-positive cells. The mRNA and protein levels of PKA, CREB, and BDNF were lower in the IUGR group. The mRNA and protein expression levels of these factors were increased by taurine supplementation but reduced by the addition of H89. Taurine supplementation increased the ratio of neurons to glial cells and prevented gliosis in the differentiation of NSCs in IUGR fetal rats by activating the PKA-CREB-BDNF signaling pathway.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Taurina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Zhongguo Zhong Yao Za Zhi ; 37(14): 2147-50, 2012 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-23126203

RESUMO

OBJECTIVE: To provide a new therapeutic approach for Staphylococcus epidermidis biofilm-associated infections by the study of inhibitory effect of andrographolide (AG) on S. epidermidis biofilm. METHOD: S. epidermidis biofilms were set up in vitro, erythromycin was acted as the positive control agent, XTT reduction assay was used to evaluate AG on the initial adhesion of S. epidermidis and bacterial metabolism within biofilm, microscope was applied to observe biofilm morphology, and Congo red assay was used to detect polysacchatide interc-ellular adhesion (PIA)formation when exposed to AG. RESULT: AG showed inhibitory effects against the initial adhesion of S. epidermidis at concentrations of 1 000,100, 10 mg x L(-1), respectively,and inhibited metabolism of biofilm bacteria at the concentration of 31.25 mg x L(-1), and exhibited significantly inhibition against the biofilm morphology at the concentration of 250 mg x L(-1), while did not display inhibition against PIA formation at the concentration of 10 mg x L(-1). CONCLUSION: AG could remarkably inhibit biofilm formation of S. epidermidis, although it was less potent than erythromycin.


Assuntos
Biofilmes/efeitos dos fármacos , Diterpenos/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritromicina/farmacologia , Staphylococcus epidermidis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA