Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 189: 114715, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729342

RESUMO

As a commonly used food preservative, glycerol monocaprylate (GMC) has limited information and lacked a comprehensive risk assessment. In this study, we conducted in vitro genotoxicity tests, a 90-day subchronic toxicity study, and dietary exposure assessment in China. Rats (n = 10/sex/group) were orally administered GMC at doses of 1.02, 2.04, and 4.08 g/kg BW/day along with a water and corn oil for 90 days, including satellite groups (n = 5/sex/group) in the control groups and 4.08 g/kg BW dose group for observation after 90 days. Body weight, food consumption, hematology, serum biochemistry, urinalysis, endocrine hormone level and other metrics were examined. GMC did not exhibit genotoxicity based on the genotoxicity tests results, and an acceptable daily intake (ADI) of 40.8 mg/kg BW/day was established based on the 90-day subchronic toxicity study. Estimated daily intake of GMC for general population and consumer population in China were 0.99 mg/kg BW/day and 3.19 mg/kg BW/day respectively, which were significantly lower than the ADI. Our findings suggest that GMC does not pose a known health risk to Chinese consumers at the current usage level.

2.
Int J Biol Macromol ; 268(Pt 1): 131777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663710

RESUMO

In this study, a new carrier for loading piperine was prepared using pepper starch, and its interaction mechanism was investigated. The porous pepper starch-piperine complex (PPS-PIP) showed higher loading efficiency (76.15 %) compared to the porous corn starch-piperine complex (PCS-PIP (52.34 %)). This may be ascribed to the hemispherical shell structure of porous pepper starch (PPS) compared to the porous structure of porous corn starch (PCS) based on the SEM result. PPS-PIP had smaller particle size (10.53 µm), higher relative crystallinity (38.95 %), and better thermal stability (87.45 °C) than PCS-PIP (17.37 µm, 32.17 %, 74.35 °C). Fourier transform infrared spectroscopy (FTIR) results implied that piperine not only forms a complex with amylose but may also be physically present in porous starch. This was demonstrated by the short-range order and X-ray type. Molecular dynamics simulations confirmed that hydrogen bonding is the primary interaction between amylose and piperine. Besides the formation of the amylose-piperine complex, some of the piperine is also present in physical form.


Assuntos
Alcaloides , Benzodioxóis , Piperidinas , Alcamidas Poli-Insaturadas , Amido , Piperidinas/química , Benzodioxóis/química , Alcaloides/química , Amido/química , Alcamidas Poli-Insaturadas/química , Porosidade , Amilose/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Capsicum/química
3.
Adv Sci (Weinh) ; : e2400018, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502873

RESUMO

Mix-dimensional heterojunctions (MDHJs) photodetectors (PDs) built from bulk and 2D materials are the research focus to develop hetero-integrated and multifunctional optoelectronic sensor systems. However, it is still an open issue for achieving multiple effects synergistic characteristics to boost sensitivity and enrich the prospect in artificial bionic systems. Herein, electrically tunable Te/WSe2 MDHJs phototransistors are constructed, and an ultralow dark current below 0.1 pA and a large on/off rectification ratio of 106 is achieved. Photoconductive, photovoltaic, and photo-thermoelectric conversions are simultaneously demonstrated by tuning the gate and bias. By these synergistic effects, responsivity and detectivity respectively reach 13.9 A W-1 and 1.37 × 1012 Jones with 400 times increment. The Te/WSe2 MDHJs PDs can function as artificial bionic visual systems due to the comparable response time to those of the human visual system and the presence of transient positive and negative response signals. This work offers an available strategy for intelligent optoelectronic devices with hetero-integration and multifunctions.

4.
J Am Chem Soc ; 146(15): 10432-10442, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38498436

RESUMO

As an efficient and clean energy carrier, hydrogen is expected to play a key role in future energy systems. However, hydrogen-storage technology must be safe with a high hydrogen-storage density, which is difficult to achieve. MgH2 is a promising solid-state hydrogen-storage material owing to its large hydrogen-storage capacity (7.6 wt %) and excellent reversibility, but its large-scale utilization is restricted by slow hydrogen-desorption kinetics. Although catalysts can improve the hydrogen-storage kinetics of MgH2, they reduce the hydrogen-storage capacity. Single-atom catalysts maximize the atom utilization ratio and the number of interfacial sites to boost the catalytic activity, while easy aggregation at high temperatures limits further application. Herein, we designed a single-atom Ni-loaded TiO2 catalyst with superior thermal stability and catalytic activity. The optimized 15wt%-Ni0.034@TiO2 catalyst reduced the onset dehydrogenation temperature of MgH2 to 200 °C. At 300 °C, the H2 released and absorbed 4.6 wt % within 5 min and 6.53 wt % within 10 s, respectively. The apparent activation energies of MgH2 dehydrogenation and hydrogenation were reduced to 64.35 and 35.17 kJ/mol of H2, respectively. Even after 100 cycles of hydrogenation and dehydrogenation, there was still a capacity retention rate of 97.26%. The superior catalytic effect is attributed to the highly synergistic catalytic activity of single-atom Ni, numerous oxygen vacancies, and multivalent Tix+ in the TiO2 support, in which the single-atom Ni plays the dominant role, accelerating electron transfer between Mg2+ and H- and weakening the Mg-H bonds. This work paves the way for superior hydrogen-storage materials for practical unitization and also extends the application of single-atom catalysis in high-temperature solid-state reactions.

5.
Environ Int ; 183: 108422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217903

RESUMO

Ozone (O3) is one of the most harmful pollutants affecting health. However, the potential effects of O3 exposure on microbes in the gut-lung axis related to lung injuries remain elusive. In this study, female mice were exposed to 0-, 0.5- and 1-ppm O3 for 28 days, followed by routine blood tests, lung function tests and histopathological examination of the colon, nasal cavity and lung. Mouse faeces and lungs were collected for 16s rRNA sequencing to assess the overall microbiological profile and screen for key differential enriched microbes (DEMs). The key DEMs in faecal samples were Butyricimonas, Rikenellaceae RC9 and Escherichia-Shigella, whereas those in lung samples were DNF00809, Fluviicola, Bryobacter, Family XII AD3011 group, Sharpea, MND1 and unclassified Phycisphaeraceae. After a search in microbe-disease databases, these key DEMs were found to be associated with lung diseases such as lung neoplasms, cystic fibrosis, pneumonia, chronic obstructive pulmonary disease, respiratory distress syndrome and bronchiectasis. Subsequently, we used transcriptomic data from Gene Expression Omnibus (GEO) with exposure conditions similar to those in this study to cross-reference with Comparative Toxicogenomic Database (CTD). Il-6 and Ccl2 were identified as the key causative genes and were validated. The findings of this study suggest that exposure to O3 leads to significant changes in the microbial composition of the gut and lungs. These changes are associated with increased levels of inflammatory factors in the lungs and impaired lung function, resulting in an increased risk of lung disease. Altogether, this study provides novel insights into the role of microbes present in the gut-lung axis in O3 exposure-induced lung injury.


Assuntos
Lesão Pulmonar , Ozônio , Pneumonia , Camundongos , Feminino , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , RNA Ribossômico 16S , Pulmão , Pneumonia/induzido quimicamente , Ozônio/toxicidade
6.
Mol Plant Pathol ; 25(1): e13413, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279855

RESUMO

Southern corn leaf blight (SCLB) caused by Cochliobolus heterostrophus is a destructive disease that threatens global maize (Zea mays) production. Despite many studies being conducted, very little is known about molecular processes employed by the pathogen during infection. There is a need to understand the fungal arms strategy and identify novel functional genes as targets for fungicide development. Transcriptome analysis based on RNA sequencing was carried out across conidia germination and host infection by C. heterostrophus. The present study revealed major changes in C. heterostrophus gene expression during host infection. Several differentially expressed genes (DEGs) induced during C. heterostrophus infection could be involved in the biosynthesis of secondary metabolites, peroxisome, energy metabolism, amino acid degradation and oxidative phosphorylation. In addition, histone acetyltransferase, secreted proteins, peroxisomal proteins, NADPH oxidase and transcription factors were selected for further functional validation. Here, we demonstrated that histone acetyltransferases (Hat2 and Rtt109), secreted proteins (Cel61A and Mep1), peroxisomal proteins (Pex11A and Pex14), NADPH oxidases (NoxA, NoxD and NoxR) and transcription factors (Crz1 and MtfA) play essential roles in C. heterostrophus conidiation, stress adaption and virulence. Taken together, our study revealed major changes in gene expression associated with C. heterostrophus infection and identified a diverse repertoire of genes critical for successful infection.


Assuntos
Ascomicetos , Bipolaris , Zea mays , Virulência/genética , Zea mays/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/microbiologia
7.
Pest Manag Sci ; 80(2): 463-472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743431

RESUMO

BACKGROUD: Two-component histidine kinase (HK) phosphorelay signaling systems play important roles in differentiation, virulence, secondary metabolite production and response to environmental signals. Allyl isothiocyanate (A-ITC) is a hydrolysis product of glucosinolates with excellent antifungal activity. Our previous study indicated that the mycelial growth of Cochliobolus heterostrophus was significantly hindered by A-ITC. However, the function of HK in regulating A-ITC sensitivity was not clear in C. heterostrophus, the causal agent of Southern corn leaf blight. RESULTS: In this study, the role of HKs was investigated in C. heterostrophus. Deletion of the HK coding gene ChNIK1 resulted in dramatically increased sensitivity of C. heterostrophus to A-ITC. In addition, ΔChnik1 mutant exhibited significantly decreased conidiation and increased sensitivity to NaCl, KCl, tebuconazole and azoxystrobin, but deletion of the other five HK genes did not affect the A-ITC sensitivity of C. heterostrophus. ChSLN1, ChNIK4, ChNIK8 and ChMAK2 are essential for conidiation and response to H2 O2 and sodium dodecyl sulfate. However, deletion of NIKs had on effect on significant virulence. CONCLUSION: Our findings demonstrate that the HKs play different roles in A-ITC sensitivity in C. heterostrophus. © 2023 Society of Chemical Industry.


Assuntos
Ascomicetos , Bipolaris , Histidina , Histidina Quinase/genética , Ascomicetos/genética , Isotiocianatos , Zea mays/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Toxics ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38133401

RESUMO

Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.

9.
J Agric Food Chem ; 71(40): 14396-14412, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782460

RESUMO

Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Animais , Humanos , MicroRNAs/genética , Qualidade de Vida , Obesidade/metabolismo , Dieta , Microbioma Gastrointestinal/fisiologia
10.
J Agric Food Chem ; 71(42): 15466-15475, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877171

RESUMO

Isothiocyanates (ITCs) that are found in Brassicaceae exhibited obvious antifungal activity against Cochliobolus heterostrophus, which is the causal agent of southern corn leaf blight. However, the underlying antifungal mechanism of allyl-ITCs (A-ITCs) against C. heterostrophus remains largely unknown. Here, we used transcriptomic analysis to find that the high osmolarity pathway was upregulated significantly when treated with A-ITCs. To investigate the roles of the high osmolarity pathway in adaption to A-ITCs, we constructed Δssk2, Δpbs2, and Δhog1 mutant strains. Deletion of three genes (ChSSK2, ChPBS2, and ChHOG1) involved in the high osmolarity pathway resulted in significantly increased sensitivity of C. heterostrophus to ITCs. In addition, the phosphorylation level of ChHog1 was induced by A-ITC and was dependent on the presence of ChSsk2 and ChPbs2. Moreover, Δssk2, Δpbs2, and Δhog1 mutants exhibited a dramatically decreased virulence on maize leaves. Our findings demonstrated that the high osmolarity pathway played a positive role in ITC tolerance and virulence, which may provide novel insights into developing ITCs as a new fungicide against C. heterostrophus.


Assuntos
Antifúngicos , Ascomicetos , Antifúngicos/farmacologia , Glicerol , Ascomicetos/genética , Concentração Osmolar , Isotiocianatos
11.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 472-483, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36988349

RESUMO

The proliferation and differentiation of myoblasts are considered the key biological processes in muscle development and muscle-related diseases, in which the miRNAs involved remain incompletely understood. Previous research reported that miR-424(322)-5p is highly expressed in mouse skeletal muscle. Therefore, C2C12 cells are used as a model to clarify the effect of miR-424(322)-5p on the proliferation and differentiation of myoblasts. The data show that miR-424(322)-5p exhibits a decreasing trend upon myogenic differentiation. Overexpression of miR-424(322)-5p inhibits the proliferation of myoblasts, manifested by downregulation of proliferation marker genes ( CCNB1, CCND2, and CDK4), decreased percentage of EdU + cells, and reduced cell viability. In contrast, these phenotypes are promoted in myoblasts treated with an inhibitor of miR-424(322)-5p. Interestingly, its gain of function inhibits the expression of myogenic regulators, including MyoD, MyoG, MyHC, and Myf5. Additionally, immunofluorescence staining of MyHC and MyoD shows that overexpression of miR-424(322)-5p reduces the number of myotubes and decreases the myotube fusion index. Consistently, inhibition of its function mediated by an inhibitor promotes the expressions of myogenic markers and myotube fusion. Mechanistically, gene prediction and dual-luciferase reporter experiments confirm that enhancer of zeste homolog 1 ( Ezh1) is one of the targets of miR-424(322)-5p. Furthermore, knockdown of Ezh1 inhibits the proliferation and differentiation of myoblasts. Compared with NC and inhibitor treatment, inhibitor+si- EZH1 treatment rescues the phenotypes of proliferation and differentiation mediated by the miR-424(322)-5p inhibitor. Taken together, these data indicate that miR-424(322)-5p targets Ezh1 to negatively regulate the proliferation and differentiation of myoblasts.


Assuntos
MicroRNAs , Animais , Camundongos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , MicroRNAs/metabolismo , Mioblastos/metabolismo
12.
Theriogenology ; 200: 60-69, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764186

RESUMO

Sperm cryopreservation is one of the most effective methods for the conservation of germplasm resources and used of superior sires widely. However, the motility of yak (Bos grunniens) sperm was low after thawing and the proteomics changes in sperm cryopreservation remain unknown. Therefore, the aim of this study was to explore the differences between fresh sperm and frozen sperm of yak through the proteomic analysis and thus improve the understanding of sperm cryodamage. The Tandem Mass Tags (TMT) technology was used to screen differentially expressed proteins (DEPs) before and after freezing. Then, GO and KEGG analysis were conducted to analyze the DEPs enriched signaling pathways. Finally, the DEPs, including superoxide dismutase 1 (SOD1) and NADH ubiquinone oxidoreductase core subunit S8 (NDUFS8) were verified by the immunofluorescence technique. The results showed that there were 229 DEPs between fresh and frozen-thawed yak sperm. Compared with the fresh sperm, 120 proteins were up-regulated and 109 proteins were down-regulated in frozen-thawed sperm. The GO annotation showed that the up-regulated proteins enriched in metabolic and cytoskeleton-related processes, including lipoprotein metabolic process, lipid transport, extracellular region and intermediate filament cytoskeleton organization. In contrast, the down-regulated proteins enriched in biological processes including single fertilization, sperm capacitation and response to unfolded protein. KEGG pathway analysis indicated that freezing and thawing affected the oxidative phosphorylation pathway, the fructose and mannose metabolic pathway and the glycerolipid metabolic pathway of yak sperm. Immunofluorescence results showed that the protein expression level of SOD1 protein in the frozen group was significantly lower than that in the fresh group (P < 0.01), and the protein expression level of NDUFS8 protein was significantly higher in frozen group (P < 0.01). This study revealed the DEPs between fresh and frozen-thawed sperm and provides a theoretical basis to further explore the exertion of normal biological functions of yak sperm after freezing and thawing.


Assuntos
Proteômica , Preservação do Sêmen , Bovinos , Masculino , Animais , Congelamento , Sêmen , Espermatozoides/metabolismo , Criopreservação/métodos , Criopreservação/veterinária , Motilidade dos Espermatozoides , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária
13.
Anim Biotechnol ; 34(7): 2846-2854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125800

RESUMO

Tribbles homolog 2 (TRIB2) plays an important role in the follicular development of female mammals. However, its expression and function in the yak (Bos grunniens) are still unclear. In this study, we predicted the molecular characteristics of TRIB2, and revealed its expression pattern in yak (Bos grunniens) tissues and ovarian granulosa cells. We cloned the full length of the yak TRIB2 gene obtained by RT-PCR was 1368 bp and the coding sequence (CDS) was 624 bp, encoding 207 amino acids (AA). Homology analysis showed that the yak TRIB2 is highly conserved among species. TRIB2 was detected to be extensively expressed in seven tissues of the yak liver, spleen, lung, kidney, ovary, oviduct and uterus by qPCR. The expression of TRIB2 mRNA in the ovary during gestation was significantly lower than that in the non-pregnant (p < 0.05). At each stage of follicle development, the TRIB2 mRNA in granulosa cells showed a significant upward trend with the development of follicles. The expression of TRIB2 gradually decreased with the increase of the culture time of the granulosa cells in vitro. In conclusion, these results suggest that TRIB2 may play an important role in the follicular development of yaks.


Assuntos
Ovário , Útero , Bovinos/genética , Feminino , Animais , Sequência de Aminoácidos , Ovário/metabolismo , Útero/metabolismo , Células da Granulosa/metabolismo , RNA Mensageiro/genética , Mamíferos/genética , Mamíferos/metabolismo
14.
Food Res Int ; 162(Pt A): 112037, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461257

RESUMO

Kiwi berry (Actinidia arguta) is beneficial for relieving constipation, but the mechanism of easing constipation is still unknown. The alleviating effects of kiwi berry polysaccharide and polyphenol extracts on loperamide induced constipation were studied. Administration with polysaccharide extract of kiwi berry in loperamide-induced constipation mice distinctly decreased the body weight gain by 124.0%, the number and the water content of feces was decreased by 152.4% and 107.0% respectively, gastrointestinal (GI) transit rate was decreased by 39.5% and the time to the first dark stool was largen by 56.2% as compared with those in the loperamide group, respectively. The levels of excitability neurotransmitters were increased, and the inhibitory neurotransmitter was decreased in the kiwi berry extracts groups compared with the loperamide group. The levels of aquaporins were decreased to ameliorate constipation. Moreover, kiwi berry extracts can protect colon smooth muscle cells from apoptosis and help to restore colon health. Interstitial cells of Cajal (ICC) and animal experiments suggested that kiwi berry extracts can up-regulate the expression levels of stem cell factors (SCF)/c-kit protein. Kiwi berry can remodel the structure of microbial communities. All findings suggest that kiwi berry polysaccharide and polyphenol especially its polysaccharide extract, can effectively alleviate constipation induced by loperamide. Kiwi berry is a promising food supplement that can be used to relieve constipation.


Assuntos
Actinidia , Camundongos , Animais , Polifenóis/farmacologia , Frutas , Loperamida , Polissacarídeos/farmacologia , Carboidratos da Dieta , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico
15.
BMC Microbiol ; 22(1): 235, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192685

RESUMO

BACKGROUND: Ginseng, an important traditional Chinese medicine and a new resource food, has two production modes: farmland ginseng and forestland ginseng. Ginseng faces many problems such as high soil bulk density, easy hardening, low nutrient content, reduced porosity and increased soil acidification because of continuous cropping. Increasing studies indicate that plant rhizosphere symbiotic bacteria have an important effect on plant growth and development. We speculate that differences in microbial community may play an important role in promoting ginseng growth, development and health. To reveal the differences between farmland and forestland ginseng cultivation, and to address problems associated with continuous ginseng cropping, we investigated the effects of differences in plant rhizosphere symbiotic bacterial communities in promoting ginseng growth, development, and health. RESULT: In the present study, the microbial communities in the rhizosphere of different genotypes and ecological environments were analyzed using the high-throughput sequencing platform Illumina, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt), and other technologies. The organic matter, total nitrogen, available nitrogen, and available phosphorus contents in forestland soil were significantly different from those in farmland. The bacterial communities of ginseng in forestland, farmland, and greenhouse environments have specific dominant groups at the phylum and genus levels. There were differences in the gene functions of ginseng root-related bacterial communities between forestland and farmland. There were significant differences in the abundance distribution of rhizosphere bacteria among the different genotypes at the phylum and genus levels. CONCLUSIONS: There is a close relationship between the ecological environment and bacterial population structure, and the ecological environment of forestland is more conducive to the formation of rich rhizosphere bacterial populations; additionally, the genetic diversity is richer than that of farmland. The rhizosphere bacterial community structure of ginseng was influenced by genotype, and there was a correlation between the distance between ginseng genotypes and the stratified clustering of its rhizosphere bacterial community structure.


Assuntos
Panax , Rizosfera , Bactérias/genética , Genótipo , Nitrogênio , Panax/microbiologia , Fósforo , Filogenia , Plantas , Solo/química , Microbiologia do Solo
16.
J Sci Food Agric ; 102(3): 984-994, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34302364

RESUMO

BACKGROUND: Free fractions of different blackberry varieties' extracts are high in phenolic compounds with antioxidant activities. However, the phenolic profiles and antioxidant activities against peroxyl radicals of bound fractions of different blackberry varieties' extracts have not been previously reported. In addition, what the key antioxidant phenolic compounds are in free and bound fractions of blackberry extracts remain unknown. This study aimed to investigate the phenolic profiles and antioxidant activities of free and bound fractions of eight blackberry varieties' extracts and reveal the key antioxidant phenolic compounds by boosted regression trees. RESULTS: Fifteen phenolics (three anthocyanins, four flavonols, three phenolic acids, two proanthocyanidins, and three ellagitannins) were identified in blackberry by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Ferulic acid, ellagic acid, procyanidin C1, kaempferol-O-hexoside, ellagitannins hex, and gallic acid were major bound phenolics. Bound fractions of eight blackberry varieties' extracts were high in phenolics and showed great antioxidant activity. Boosted regression trees analysis showed that cyanidin-3-O-glucoside and chlorogenic acid were the most significant compounds, contributing 48.4% and 15.9% respectively to the antioxidant activity of free fraction. Ferulic acid was the most significant antioxidant compound in bound fraction, with a contribution of 61.5%. Principal component analysis showed that Kiowa was the best among the eight varieties due to its phenolic profile and antioxidant activity. CONCLUSION: It was concluded that blackberry varieties contained high amounts of bound phenolics, which confer health benefits through reducing oxidative stress. Ferulic acid was the key compound to explain the antioxidant activities of bound fractions. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Fenóis/química , Extratos Vegetais/química , Rubus/química , Antocianinas/química , Cromatografia Líquida de Alta Pressão , Frutas/química , Taninos Hidrolisáveis/química , Hidroxibenzoatos/química , Espectrometria de Massas , Proantocianidinas/química , Rubus/classificação
17.
Food Sci Nutr ; 9(10): 5616-5625, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646531

RESUMO

The kiwi berry (Actinidia arguta) is a new product on the market that expanding worldwide acceptance and consumption. This widespread interest has created an increasing demand to identify the nutritional and health benefits of kiwi berry. Many studies are being actively conducted to investigate the composition and health-promoting effects of kiwi berry. In this study, the phytochemical content of free and bound fractions of eight kiwi berry varieties were systematically investigated in order to better understand the potential of this superfood crop. Nine phenolic monomers were identified and quantified by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultrahigh-performance liquid chromatography-PAD. Antioxidant activity was further determined via peroxyl radical scavenging capacity and cellular antioxidant activity assays. The free extracts had higher phytochemical contents and antioxidant activities than the corresponding bound extracts among the eight kiwi berry varieties. Bivariate Pearson's and multivariate correlation analyses showed that antioxidant activities were most related to the total phenolic, flavonoid, vitamin C, and phenolic acids contents. The results provide a theoretical basis for the selection of kiwi berry varieties and the utilization of functional foods.

18.
Front Plant Sci ; 12: 689038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276738

RESUMO

The kiwi berry (Actinidia arguta) has been widely studied because of its rich phenolic, flavonoid, and vitamin C contents. Numerous reports have demonstrated that fruit peels contain higher phenolic content and antioxidant activity than that of flesh. In this study, the phytochemical content and antioxidant activities of peel and flesh extracts of six kiwi berries were analyzed from four regions (namely, Dandong, Benxi, Taian, and Tonghua) in China. The antioxidant activity was determined using the peroxyl radical scavenging capacity (PSC) and cellular antioxidant activity (CAA) assays. The phenolic, flavonoid, and vitamin C contents of kiwi berry peel were 10.77, 13.09, and 10.38 times richer than that of kiwi berry flesh, respectively. In addition, the PSC and CAA values of kiwi berry peel were higher than those of kiwi berry flesh. The analysis of the separation and contents of phenolics were performed by the high-performance liquid chromatography (HPLC)-diode-array detectormass spectrometry/mass (DAD-MS/MS) system, and the results illustrated that protocatechuic acid, caffeic acid, chlorogenic acid, and quinic acid were the major phenolic compounds. In conclusion, this study indicated that kiwi berry peel contains a rich source of antioxidants. These data are of great significance for the full development and utilization of kiwi berries in these four regions of China to produce nutraceutical and functional foods.

19.
Parasit Vectors ; 14(1): 8, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407752

RESUMO

BACKGROUND: Schistosomiasis japonica is a severe zoonosis. Domestic animals are the primary source of infection and play an important role in disease transmission. Surveillance and diagnosis play key roles in schistosomiasis control; however, current techniques for the surveillance and diagnosis of the disease have limitations. In this study, we developed a novel fluorescence immunochromatographic assay (FICA) strip to detect anti-Schistosoma japonicum antibodies in host serum. METHODS: A FICA strip was developed for the diagnosis of Schistosoma japonicum in domestic animals. Streptococcus protein G (SPG) and soluble egg antigen (SEA) were transferred onto a nitrocellulose (NC) membrane to form the control line (C) and the test line (T), respectively. With fluorescence activity as well as binding activity to multispecies IgG, the recombinant protein rSPG-RFP was expressed and employed as an antibody indicator in the FICA strips. RESULTS: The dual gene fusion plasmid was verified by PCR and restriction enzyme digestion. The expressed recombinant protein was 39.72 kDa in size, which was consistent with the predicted molecular weight. The western blot results showed binding activity between rSPG-RFP and IgGs from different hosts. Fluorescence microscopy also showed the fluorescence activity of the protein present. The affinity constant (Ka) values of rSPG-RFP with rabbit, donkey, mouse and goat IgG were 1.9 × 105, 4.1 × 105, 1.7 × 105 and 5.4 × 105, respectively. Moreover, based on the recombinant protein, the test strip for detecting S. japonicum in buffaloes could distinguish positive from negative serum. The lower limit of detection of the FICA strip was 1:10,000. Compared with ELISA, the FICA strips exhibited similar results in the diagnosis of infection in clinical bovine serum samples, with a kappa value of 0.9660 and P < 0.01. The cross-reactivities of the FICA strips with Haemonchus contortus and Schistosoma turkestanicum (30.15% and 91.66%, respectively) were higher than those of ELISA (26.98% and 87.5%, respectively). CONCLUSIONS: Based on the rSPG-RFP protein that we developed, strip detection can be completed within 15 min. Heightened sensitivity allows the strip to accurately identify schistosome antibodies in serum. In conclusion, this method is convenient, feasible, rapid and effective for detecting S. japonicum.


Assuntos
Imunoensaio/métodos , Esquistossomose Japônica/diagnóstico , Animais , Animais Domésticos/imunologia , Animais Domésticos/parasitologia , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Proteínas de Bactérias/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Corantes Fluorescentes , Camundongos , Proteínas Recombinantes/imunologia , Schistosoma japonicum/imunologia
20.
J Agric Food Chem ; 67(25): 7016-7024, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194907

RESUMO

Most of the previous in vitro digestion treatments were conducted directly to whole grains without extraction of free phenolics, thus the bioaccessible phenolics contained both free phenolics that survived the digestion and digested phenolics released by digestion. However, the profiles of digested phenolics released by digestion remain unknown. This study was designed to investigate the phytochemical contents, peroxyl radical scavenging capacities (PSCs), and cellular antioxidant activities (CAAs) of free, digested, and bound fractions of whole grains. Total phenolic contents of whole grains were highest in digested fraction, followed by free and bound fractions. The predominant phenolics were 12 phenolic acids and one flavonoid, which mostly existed in bound forms, then in digested and free forms. The digested phenolics bound to proteins were in conjugated form. The bound fractions had the highest PSCs, followed by free and digested fractions. CAAs were highest in bound fractions, followed by digested and free fractions.


Assuntos
Antioxidantes/metabolismo , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/metabolismo , Grãos Integrais/metabolismo , Antioxidantes/química , Linhagem Celular , Digestão , Flavonoides/química , Flavonoides/metabolismo , Células Hep G2 , Humanos , Modelos Biológicos , Fenóis/química , Fenóis/metabolismo , Compostos Fitoquímicos/química , Extratos Vegetais/química , Sementes/química , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA