Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 135: 108640, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871632

RESUMO

Dissolved oxygen (DO) is essential for teleosts, and fluctuating environmental factors can result in hypoxic stress in the golden pompano (Trachinotus blochii). However, it is unknown whether different recovery speeds of DO concentration after hypoxia induce stress in T. blochii. In this study, T. blochii was subjected to hypoxic conditions (1.9 ± 0.2 mg/L) for 12 h followed by 12 h of reoxygenation at two different speeds (30 mg/L per hour and 1.7 mg/L per hour increasing). The gradual reoxygenation group (GRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 3 h, and the rapid reoxygenation group (RRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 10 min. Physiological and biochemical parameters of metabolism (glucose, glycegon, lactic acid (LD), lactate dehydrogenase (LDH), pyruvic acid (PA), phosphofructokinase (PFKA), and hexokinase (HK), triglyceride (TG), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT-1)) and transcriptome sequencing (RNA-seq of liver) were monitored to identify the effects of the two reoxygenation speeds. Increased LD content and increased activity of LDH, PA, PFKA, and HK suggested enhanced anaerobic glycolysis under hypoxic stress. LD and LDH levels remained significantly elevated during reoxygenation, indicating that the effects of hypoxia were not immediately alleviated during reoxygenation. The expressions of PGM2, PFKA, GAPDH, and PK were increased in the RRG, which suggests that glycolysis was enhanced. The same pattern was not observed in the GRG. Additionally, In the RRG, reoxygenation may promote glycolysis to guarantee energy supply. However, the GRG may through the lipid metabolism such as steroid biosynthesis at the later stage of reoxygenation. In the aspect of apoptosis, differentially expressed genes (DEGs) in the RRG were enriched in the p53 signaling pathway, which promoted cell apoptosis, while DEGs in the GRG seem to activate cell apoptosis at early stage of reoxygenation but was restrained latterly. DEGs in both the RRG and the GRG were enriched in the NF-kappa B and JAK-STAT signaling pathways, the RRG may induce cell survival by regulating the expression of IL-12B, COX2, and Bcl-XL, while in the GRG it may induce by regulating the expression of IL-8. Moreover, DEGs in the RRG were also enriched in the Toll-like receptor signaling pathway. This research revealed that at different velocity of reoxygenation after hypoxic stress, T. blochii would represent different metabolic, apoptotic and immune strategies, and this conclusion would provide new insight into the response to hypoxia and reoxygenation in teleosts.


Assuntos
Hipóxia , Oxigênio , Animais , Hipóxia/veterinária , Hipóxia/genética , Oxigênio/metabolismo , Peixes/metabolismo , Hipóxia Celular , Ácido Láctico , Imunidade
2.
Front Pharmacol ; 12: 634176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897423

RESUMO

The outbreak of SARS-CoV-2 virus caused more than 80,155,187 confirmed COVID-19 cases worldwide, which has posed a serious threat to global public health and the economy. The development of vaccines and discovery of novel drugs for COVID-19 are urgently needed. Although the FDA-approved SARS-CoV-2 vaccines has been launched in many countries recently, the strength of safety, stringent storage condition and the possibly short-term immunized efficacy remain as the major challenges in the popularity and recognition of using vaccines against SARS-CoV-2. With the spike-receptor binding domain (RBD) of SARS-CoV-2 being responsible for binding to human angiotensin-converting enzyme 2 receptor (hACE2), ACE2 is identified as the receptor for the entry and viral infection of SARS-CoV-2. In this study, molecular docking and biolayer interferometry (BLI) binding assay were adopted to determine the direct molecular interactions between natural small-molecule, 1,2,3,4,6-Pentagalloyl glucose (PGG) and the spike-RBD of the SARS-CoV-2. Our results showed that PGG preferentially binds to a pocket that contains residues Glu 340 to Lys 356 of spike-RBD with a relatively low binding energy of -8 kcal/mol. BLI assay further confirmed that PGG exhibits a relatively strong binding affinity to SARS-CoV-2-RBD protein in comparison to hACE2. In addition, both ELISA and immunocytochemistry assay proved that PGG blocks SARS-CoV-2-RBD binding to hACE2 dose dependently in cellular level. Notably, PGG was confirmed to abolish the infectious property of RBD-pseudotyped lentivirus in hACE2 overexpressing HEK293 cells, which mimicked the entry of wild type SARS-CoV-2 virus in human host cells. Finally, maximal tolerated dose (MTD) studies revealed that up to 200 mg/kg/day of PGG was confirmed orally safe in mice. Our findings suggest that PGG may be a safe and potential antiviral agent against the COVID-19 by blockade the fusion of SARS-CoV-2 spike-RBD to hACE2 receptors. Therefore, PGG may be considered as a safe and natural antiviral agent for its possible preventive application in daily anti-virus hygienic products such as a disinfectant spray or face mask.

3.
Curr Opin Pharmacol ; 54: 59-71, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32942096

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that is associated with chronic inflammation in joints, which contribute to synovial membrane hyperplasia and cartilage damage. Conventional disease-modifying antirheumatic drugs (DMARDs), such as methotrexate (MTX) and leflunomide (LEF), are the common RA therapy to reduce inflammation and disease progression. Recently, drug-resistance in RA with conventional treatment has become an issue. Mutations in p53 tumor suppressor gene and overexpression of ABCB1/MDR-1/P-gp transporters may contribute to antirheumatic drug-resistance in RA. Biologic DMARDs (bDMARDs) are often prescribed, when conventional DMARDs fail to treat RA, by targeting proinflammatory mediators such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. The efficacy of bDMARDs is affected by personal factors, for example, age, smoking, body mass index (BMI), immunogenicity, and genetic polymorphisms. This review highlights the role of p53 gene mutations, ABC family transporters and personal factors in antirheumatic drug-resistance, which may lead to new personalized therapies against RA with an increased drug-sensitivity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Resistência a Medicamentos , Genes p53 , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Resistência a Medicamentos/genética , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA