Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(8): e0203128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161257

RESUMO

Low serum cholinesterase (SCHE) activity has been associated with poor prognoses in a variety of conditions, including sepsis. However, such an association has not been well characterized since the Third International Consensus Definitions Task Force modified the definition of sepsis to "life-threatening organ dysfunction due to a dysregulated host response to infection" (known as sepsis-3) in 2016. In the current retrospective cohort study, we examined whether 30-day mortality in sepsis-3 patients is associated with SCHE activity. A total of 166 sepsis-3 patients receiving treatment at an emergency intensive care unit (EICU) were included. The 30-day death rate was 33.1% (55/166). SCHE activity upon EICU admission was lower in nonsurvivors (3.3 vs. 4.5 KU/L in survivors, p = 0.0002). Subjects with low SCHE activity (defined as <4 KU/L) had higher 30-day mortality rates than subjects with normal SCHE activity (45.5%, 40/88 vs. 19.2%, 15/78; p<0.001). A multivariate logistic regression analysis revealed an association between 30-day mortality and lower SCHE activity after adjustments for relevant factors, such as acute multiple organ dysfunction. The odds ratio (OR) for every unit decrease in SCHE activity was 2.11 (95% confidence interval (CI), 1.37-3.27; p = 0.0008). The area under the curve (AUC) of SCHE activity for predicting 30-day mortality was 0.67 (95% CI 0.59-0.74), and the AUC of lactate for predicting 30-day mortality was 0.64 (95% CI 0.57-0.70). Using a combination of SCHE and lactate, the AUC was 0.74 (95% CI 0.69-0.83). These data suggest that lower SCHE activity is an independent risk factor for 30-day mortality in sepsis-3 patients.


Assuntos
Colinesterases/sangue , Sepse/sangue , Sepse/mortalidade , Biomarcadores/sangue , Cuidados Críticos , Serviços Médicos de Emergência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Sepse/enzimologia , Sepse/terapia , Fatores de Tempo
2.
Exp Ther Med ; 15(2): 2156-2164, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29434819

RESUMO

The present study investigated the mechanism underlying the anti-inflammatory effects of Tangshen formula (TS) in Sprague Dawley (SD) rats with diabetic nephropathy (DN). A rat model of DN was established by intraperitoneal injection of 1% (40 mg/kg) streptozotocin and administration of a high fat and glucose diet. Subsequently, SD rats were randomly divided into six groups (n=8): A DN group, a valsartan group, a high-dose TS group, a middle-dose TS group, a low-dose TS group and a control group with normal SD rats. Once rats received their allocated treatment for 12 weeks, body weight and kidney weight were recorded, and fasting blood glucose, ratio of urinary protein, ß2-MG and creatinine clearance rate were determined. Furthermore, hemodynamic indices, including plasma viscosity and whole blood reduction viscosity were detected. Immunohistochemistry was used to detect the infiltration of macrophages in the kidneys of rats. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to investigate the activation; mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibitory factor (MIF), nuclear factor-κB (NF-κB) and sirtuin-1 (SIRT1) in each group. In comparison with the DN group, each biochemical indicator of rats in the high-dose TS group was significantly decreased (P<0.05). Blood viscosity in each treatment group was significantly decreased when compared with the DN group (P<0.01). Hematoxylin and eosin staining indicated that the infiltration of macrophages was significantly decreased in the high-dose TS group when compared with the DN group (P<0.01). mRNA and protein expression levels of MCP-1 and MIF in the high-dose TS group were significantly decreased when compared with the DN group (P<0.05). In the treatment groups, SITR1 mRNA expression levels were significantly increased, whereas the mRNA expression levels of NF-κB were significantly decreased (P<0.01). Western blotting results indicated a significant decrease in the protein expression levels of acetylated NF-κB in the treatment groups when compared with the DN group (P<0.01) and the propensity of protein expression of the other inflammatory factors were consistent with the mRNA findings. The results of the high-dose TS group were similar to those of the valsartan group. The present study indicates that TS was able to activate SITR1, which lead to NF-κB deacetylation, thus reducing the release of inflammatory factors and decreasing the severity of diabetic nephropathy.

3.
Chin J Integr Med ; 22(12): 910-917, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26712211

RESUMO

OBJECTIVE: To explore the mechanism of the protective effects of Panax notoginseng saponins (PNS) on kidney in diabetic rats. METHODS: Diabetic rat model was obtained by intravenous injection of alloxan, and the rats were divided into model, PNS-100 mg/(kg day) and PNS-200 mg/(kg day) groups, 10 each. Another 10 rats injected with saline were served as control. Periodic acid-Schiff staining and immunological histological chemistry were used to observe histomorphology and tissue expression of bone morphogenetic protein-7 (BMP-7). Silent information regulator 1 (SIRT1) was silenced in rat mesangial cells by RNA interference. The mRNA expressions of SIRT-1, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor ß1 (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) were analyzed by reverse transcription polymerase chain reaction. The protein expressions of SIRT1 and the acetylation of nuclear factor κB (NF-κB) P65 were determined by western blotting. The concentration of MCP-1, TGF-ß1 and malondialdehyde (MDA) in culture supernatant were detected by enzyme-linked immuno sorbent assay. The activity of superoxide dismutase (SOD) was detected by the classical method of nitrogen and blue four. RESULTS: In diabetic model rats, PNS could not only reduce blood glucose and lipid (P<0.01), but also increase protein level of BMP-7 and inhibit PAI-1 expression for suppressing fibrosis of the kidney. In rat mesangial cells, PNS could up-regulate the expression of SIRT1 (P<0.01) and in turn suppress the transcription of TGF-ß1 (P<0.05) and MCP-1 (P<0.05). PNS could also reverse the increased acetylation of NF-κB p65 by high glucose. In addition, redox regulation factor MDA was down-regulated (P<0.05) and SOD was up-regulated (P<0.01), which were both induced by SIRT1 up-regulation. CONCLUSIONS: PNS could protect kidney from diabetes with the possible mechanism of up-regulating SIRT1, therefore inhibiting inflammation through decreasing the induction of inflammatory cytokines and TGF-ß1, as well as activating antioxidant proteins.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Rim/patologia , Panax notoginseng/química , Substâncias Protetoras/uso terapêutico , Saponinas/uso terapêutico , Sirtuína 1/genética , Regulação para Cima/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Glicemia/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Rim/efeitos dos fármacos , Testes de Função Renal , Lipídeos/sangue , Masculino , Malondialdeído/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Saponinas/farmacologia , Superóxido Dismutase/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
4.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 41(2): 166-70, 2012 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-22499513

RESUMO

OBJECTIVE: To compare the effects of mannitol and hypertonic saline (HS) in treatment of intracranial hypertension (ICH) of rabbits. METHODS: The animal mode of ICH was established by perfusing artificial cerebrospinal fluids (aCSF) with controlled pressure into the cerebral ventricles of rabbits. The mean arterial pressure, respiratory rate, tidal volume, perfusion rate of aCSF and water content of cerebrum were investigated in rabbits with ICH after a single bolus of 20% mannitol (5 ml/kg), 7.5% HS (2.2 ml/kg) or 23.4% HS (2.2 ml/kg). RESULTS: After the intracranial pressure was elevated from 15 cmH2O to 75 cmH2O, the mean arterial pressure was increased and the tidal volume was decreased. After treatment by 20% mannitol, 7.5% HS or 23.4% HS, the increased percentage of mean arterial pressure and the decreased percentage of tidal volume were similar to the changes in control group. However, the perfusion rate of CSF was increased and water content of cerebrum was decreased after treatment by either 20% mannitol or 23.4% HS, but not by 7.5% HS. No different effects were found between 20% mannitol and 23.4% HS. CONCLUSION: With the similar osmotic burden, 20% mannitol is more effective in treating ICH than 7.5% HS. With higher osmotic load, the efficacy of HS is enhanced, and 23.4% HS may be used as an alternative to mannitol in treatment of ICH.


Assuntos
Hipertensão Intracraniana/tratamento farmacológico , Manitol/uso terapêutico , Solução Salina Hipertônica/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Masculino , Manitol/administração & dosagem , Coelhos , Solução Salina Hipertônica/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA