Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(19): 5913-5919, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710045

RESUMO

Electrical resistivity is the key parameter in the active regions of many current nanoscale devices, from memristors to resistive random-access memory and phase-change memories. The local resistivity of the materials is engineered on the nanoscale to fit the performance requirements. Phase-change memories, for example, rely on materials whose electrical resistance increases dramatically with a change from a crystalline to an amorphous phase. Electrical characterization methods have been developed to measure the response of individual devices, but they cannot map the local resistance across the active area. Here, we propose a method based on operando electron holography to determine the local resistance within working devices. Upon switching the device, we show that electrical resistance is inhomogeneous on the scale of only a few nanometers.

2.
J Robot Surg ; 18(1): 219, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771389

RESUMO

An experimental validation of a robotic system for radioactive iodine-125 seed implantation (RISI) in tumor treatment was conducted using customized phantom models and animal models simulating liver and lung lesions. The robotic system, consisting of planning, navigation, and implantation modules, was employed to implant dummy radioactive seeds into the models. Fiducial markers were used for target localization. In phantom experiments across 40 cases, the mean errors between planned and actual seed positions were 0.98 ± 1.05 mm, 1.14 ± 0.62 mm, and 0.90 ± 1.05 mm in the x, y, and z directions, respectively. The x, y, and z directions correspond to the left-right, anterior-posterior, and superior-inferior anatomical planes. Silicone phantoms exhibiting significantly smaller x-axis errors compared to liver and lung phantoms (p < 0.05). Template assistance significantly reduced errors in all axes (p < 0.05). No significant dosimetric deviations were observed in parameters such as D90, V100, and V150 between plans and post-implant doses (p > 0.05). In animal experiments across 23 liver and lung cases, the mean implantation errors were 1.28 ± 0.77 mm, 1.66 ± 0.69 mm, and 1.86 ± 0.93 mm in the x, y, and z directions, slightly higher than in phantoms (p < 0.05), with no significant differences between liver and lung models. The dosimetric results closely matched planned values, confirming the accuracy of the robotic system for RISI, offering new possibilities in clinical tumor treatment.


Assuntos
Radioisótopos do Iodo , Neoplasias Pulmonares , Imagens de Fantasmas , Procedimentos Cirúrgicos Robóticos , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/instrumentação , Radioisótopos do Iodo/uso terapêutico , Animais , Neoplasias Pulmonares/radioterapia , Braquiterapia/métodos , Braquiterapia/instrumentação , Neoplasias Hepáticas/radioterapia , Humanos , Marcadores Fiduciais
3.
J Dent ; 143: 104889, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38369252

RESUMO

OBJECTIVES: To evaluate dynamic condylar positions by integrating mandibular movement recording data and cone-beam computed tomography (CBCT) and to investigate its accuracy via dynamic model experiments. METHODS: A polyvinyl chloride skull model was utilized. A robot arm was used to operate the mandible to perform mouth opening, closing, protrusion, and lateral movements. A recording device, worn on the skull, was used to record the dynamic process and an optical position tracking (OPT) system was used to simultaneously trace the movements. A self-developed software module was used to evaluate the dynamic condylar position by integrating the dynamic tracing data and a virtual skull model derived from CBCT images. Errors were defined as differences between the dynamic coordinates of six landmarks around the condylar area derived from the software module (test) and OPT system (gold standard). RESULTS: The condylar position errors were 0.76 ± 0.31, 0.55 ± 0.15, and 0.68 ± 0.23 mm for mouth opening, bilateral, and protrusion movements, respectively. Furthermore, the errors for small, moderate, and large mouth opening movements were 0.62 ± 0.19, 0.69 ± 0.29, and 0.94 ± 0.31 mm, respectively. The errors for all movements, except for large mouth opening, were significantly less than 1 mm (P < 0.05). The error was not different from 1 mm in the large mouth opening movement (P > 0.05). CONCLUSIONS: Our developed method of achieving dynamic condylar position by integrating mandibular movement recording data and CBCT images is clinically reliable. CLINICAL SIGNIFICANCE: This study proved the reliability of evaluating dynamic condylar position using a commercial dynamic recording instrument and CBCT images.


Assuntos
Côndilo Mandibular , Articulação Temporomandibular , Articulação Temporomandibular/diagnóstico por imagem , Côndilo Mandibular/diagnóstico por imagem , Reprodutibilidade dos Testes , Registro da Relação Maxilomandibular , Mandíbula/diagnóstico por imagem
4.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430365

RESUMO

After each robot end tool replacement, tool center point (TCP) calibration must be performed to achieve precise control of the end tool. This process is also essential for robot-assisted puncture surgery. The purpose of this article is to solve the problems of poor accuracy stability and strong operational dependence in traditional TCP calibration methods and to propose a TCP calibration method that is more suitable for a physician. This paper designs a special binocular vision system and proposes a vision-based TCP calibration algorithm that simultaneously identifies tool center point position (TCPP) and tool center point frame (TCPF). An accuracy test experiment proves that the designed special binocular system has a positioning accuracy of ±0.05 mm. Experimental research shows that the magnitude of the robot configuration set is a key factor affecting the accuracy of TCPP. Accuracy of TCPF is not sensitive to the robot configuration set. Comparison experiments show that the proposed TCP calibration method reduces the time consumption by 82%, improves the accuracy of TCPP by 65% and improves the accuracy of TCPF by 52% compared to the traditional method. Therefore, the method proposed in this article has higher accuracy, better stability, less time consumption and less dependence on the operations than traditional methods, which has a positive effect on the clinical application of high-precision robot-assisted puncture surgery.


Assuntos
Médicos , Procedimentos Cirúrgicos Robóticos , Robótica , Calibragem , Humanos , Punções
5.
Sci Rep ; 7(1): 12948, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021620

RESUMO

Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

6.
Sci Rep ; 7: 39783, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051145

RESUMO

Ultracold two-component Fermi gases with a tunable population imbalance have provided an excellent opportunity for studying the exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, which have been of great interest in condensed matter physics. However, the FFLO states have not been observed experimentally in Fermi gases in three dimensions (3D), possibly due to their small phase space volume and extremely low temperature required for an equal-mass Fermi gas. Here we explore possible effects of mass imbalance, mainly in a 6Li-40K mixture, on the one-plane-wave FFLO phases for a 3D homogeneous case at the mean-field level. We present various phase diagrams related to the FFLO states at both zero and finite temperatures, throughout the BCS-BEC crossover, and show that a large mass ratio may enhance substantially FFLO type of pairing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA