Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36838138

RESUMO

According to the advantages of ultrasonic vibration cutting, an ultrasound-assisted corneal trepanation robotic system is developed to improve the accuracy of corneal trephination depth and corneal incision quality in corneal trephination operations. Firstly, we analyzed the reasons for the difficulty in controlling the depth of trephination in corneal transplantations from the perspective of the biomechanical properties of the cornea. Based on the advantages of ultrasonic vibration cutting, we introduced an ultrasonic-vibration-assisted cutting method for corneal trephination and analyzed the cutting mechanism. Secondly, we described the surgical demands of corneal trephination and listed the design requirements of a robotic system. Thirdly, we introduced the design details of said system, including the system's overall structure, the ultrasound-assisted end effector, the key mechanisms of the robotic system, and the human-machine interaction interface. We designed the end effector based on ultrasonic vibration cutting and its eccentric adjustment system in an innovative way. Additionally, we then presented a procedure for robot-assisted corneal trephination. Finally, we performed several cutting experiments on grapes and porcine eyeballs in vitro. The results show that, compared with manual trephine, ultrasound-assisted corneal trephination has a better operation effect on the accuracy of corneal trephination depth and corneal incision quality.

2.
Micromachines (Basel) ; 13(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36557363

RESUMO

Supine rollover plays an important role in the prevention of pressure sores in long-term bedridden patients. It is of great significance to study the mechanism of human supine rollover movement and to design the rehabilitation rollover mechanism in line with man-machine cooperation. In human supine rollover movement, shoulder and hip are the key parts of force application. Based on anatomical theory, the motion trajectory information of shoulder and hip skeletal rehabilitation parts is collected by combining optical motion capture and rigid body modeling. Following a kinematics simulation analysis, the simulation curve was compared with the experimental curve track; the numerical difference was small. It is proved that the simulation model is correct, and it is also shown that the designed rehabilitation rollover mechanism can better reproduce the natural rolling motion state of the human body. It can meet the requirements of human-machine synergistic assisted lateral roll rehabilitation aids and provides a solution for pressure sore prevention.

3.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888931

RESUMO

Concerning the biomechanics and energy consumption of the lower limbs, a soft exoskeleton for the powered plantar flexion of the ankle, named A-Suit, was developed to improve walking endurance in the lower limbs and reduce metabolic consumption. The method of ergonomics design was used based on the biological structures of the lower limbs. A profile of auxiliary forces was constructed according to the biological force of the Achilles tendon, and an iterative learning control was applied to shadow this auxiliary profile by iteratively modifying the traction displacements of drive units. During the evaluation of the performance experiments, four subjects wore the A-Suit and walked on a treadmill at different speeds and over different inclines. Average heart rate was taken as the evaluation index of metabolic consumption. When subjects walked at a moderate speed of 1.25 m/s, the average heart rate Hav under the Power-ON condition was 7.25 ± 1.32% (mean ± SEM) and 14.40 ± 2.63% less than the condition of No-suit and Power-OFF. Meanwhile, the additional mass of A-Suit led to a maximum Hav increase of 7.83 ± 1.44%. The overall reduction in Hav with Power-ON over the different inclines was 6.93 ± 1.84% and 13.4 ± 1.93% compared with that of the No-Suit and Power-OFF condition. This analysis offers interesting insights into the viability of using this technology for human augmentation and assistance for medical and other purposes.

4.
Micromachines (Basel) ; 13(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35888966

RESUMO

Based on the anti-parallelogram mechanism, an approximate cylindrical rolling joint is proposed to develop a novel cable-driven snake-arm robot with multiple degrees of freedom (DOF). Furthermore, the kinematics of the cable-driven snake-arm robot are established, and the mapping between actuator space and joint space is simplified by bending decoupling motion in the multiple segments. The workspace and bending configurations of the robot are obtained. The static model is established by the principle of minimum potential energy. Furthermore, the simplified cable constraints in the static model are proposed through Taylor expansion, which facilitates the equilibrium conformation analysis of the robot under different external forces. The cable-driven snake-arm robot prototype is developed to verify the feasibility of the robot design and the availability of the static model through the experiments of the free bending motion and the external load on the robot.

5.
Micromachines (Basel) ; 13(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35744439

RESUMO

A soft exoskeleton for the hip flexion, named H-Suit, is developed to improve the walking endurance of lower limbs, delay muscle fatigue and reduce the activation level of hip flexors. Based on the kinematics and biomechanics of the hip joints, the ergonomic design of the H-Suit system is clearly presented and the prototype was developed. The profile of the auxiliary forces is planned in the auxiliary range where the forces start at the minimum hip angle, reach the maximum (120 N) and end at 90% of each gait cycle. The desired displacements of the traction unit which consist of the natural and elastic displacements of the steel cables are obtained by the experimental method. An assistance strategy is proposed to track the profile of the auxiliary forces by dynamically adjusting the compensation displacement Lc and the hold time Δt. The influences of the variables Lc and Δt on the natural gaits and auxiliary forces have been revealed and analyzed. The real profile of the auxiliary forces can be obtained and is consistent with the theoretical one by the proposed assistance strategy. The H-Suit without the drive unit has little effect on the EMG signal of the lower limbs. In the powered condition, the H-Suit can delay the muscle fatigue of the lower limbs. The average rectified value (ARV) slope decreases and the median frequency (MNF) slope increases significantly. Wearing the H-Suit resulted in a significant reduction of the vastus lateralis effort, averaged over subjects and walking speeds, of 13.3 ± 2.1% (p = 2 × 10-5).

6.
Micromachines (Basel) ; 13(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744545

RESUMO

The Ilizarov external fixator plays an important role in the correction of complex malformed limbs. Our purpose in this work was to reveal the transmission of adjustable forces between the external fixator and the broken bone, and express the stress distribution at the end of the broken bone during the orthopedic treatment. Firstly, the screw model of the fixator was established and the theoretical relationship between the adjustable force and the stress was obtained. A sheep tibia was taken as a representative research object and its ediTable 3D entity was obtained by CT scanning. Then the mechanical model of the fixator and tibia was built using the ABAQUS software. Correction experiments were performed on the sheep tibia to measure the adjustable/support forces and tensions of the tibia. The measured results were imported to the screw and mechanical model, and the theoretical and simulation values were calculated. The theoretical tensions calculated by the screw model had a similar shape and doubled the value compared with that of the measured results. The transfer efficiency between the two results was improved and kept at about 50% after the initial 2~3 periods. The maximum stress occurring at the surface of the broken bone end was near the Kirschner wire pinhole. The simulation results for the tensions from the mechanical model showed a similar change trend, and the value was slightly higher. A biomechanical model of the Ilizarov external fixator was derived and verified through calculations, simulations and experiments. The change law of the adjustable forces and the tensions existing in the broken sheep tibias is presented herein, and offers a helpful contribution to orthopedic treatment.

7.
Ann Biomed Eng ; 50(6): 654-665, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35394601

RESUMO

Pressure ulcers are mainly caused by prolonged pressure on local tissues. The current method of preventing pressure ulcers is mainly to change the patient's position by turning, so it is significant to study the biomechanics of the typical site of pressure ulcers. Based on anatomical theory, a three-dimensional model of the shoulder and hip was established, and the theoretical contact pressure between the body and the bed was calculated by force analysis. Then, finite element models of typical parts of pressure ulcers were established, and the maximum stresses under different boundary conditions were obtained by finite element analysis. Finally, a human body turning experiment was conducted using a pressure distribution sensor, and the pressure distribution clouds and maximum contact pressure curves under different turning angles were obtained. The results show that the extreme point of maximum stress occurs at [Formula: see text], producing a stress concentration phenomenon; the peak stresses at the shoulder and hip are more balanced in the angular threshold range of [Formula: see text] to [Formula: see text], the stresses are more dispersed, and there exists an angular threshold for optimal integrated pressure, which can improve the efficiency of the use of assisted turning equipment. The relevant results help to explain the causes of pressure ulcer disease and can provide clinical references to improve the effectiveness of care.


Assuntos
Úlcera por Pressão , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Úlcera por Pressão/prevenção & controle , Decúbito Dorsal
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 118978, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33038857

RESUMO

The following paper reported four carbazole-modified fluorescent emitters. Their molecular structure and electronic transition were analyzed via their single crystal and theoretical calculation. Their photophysical parameters, including absorption, emission and quantum yield, were determined and discussed. It was found that the emission performance of benzo-thiazole-based dyes was better than that of benzo-imidazole-based dyes, owing to the electron-donating effect from the S atom. Upon the presence of metal cations, these photophysical parameters were re-measured. Benzo-thiazole-based dyes were found insensitive towards most metal cations, while benzo-imidazole-based dyes showed obvious photophysical variation upon these metal cations, including absorption red shift and emission quenching. Detailed sensing performance of a representative dye was discussed. A linear working curve with good selectivity was finally observed. Its sensing mechanism was confirmed as the coordination between metal cation and deprotonated benzo-imidazole group. Benzo-thiazole-based dyes showed amplified spontaneous emission (ASE) behavior, with threshold energy of ~220 µJ. Given the optimal condition, a highest ASE efficiency of ~2% was observed, with FWHM value of 6 nm and emission peak of 435 nm. The major novelty and advancement of these fluorescent dyes shall be the stable ASE output (dye 4) under UV excitation and the linear sensing curve with good selectivity (dye 3), which was a hard task for emission turn off sensing probes. We attributed its causation to the valent-recognizing sensing mechanism.

9.
J Healthc Eng ; 2019: 4164790, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001407

RESUMO

The ankle rehabilitation robot is essential equipment for patients with foot drop and talipes valgus to make up deficiencies of the manual rehabilitation training and reduce the workload of rehabilitation physicians. A parallel ankle rehabilitation robot (PARR) was developed which had three rotational degrees of freedom around a virtual stationary center for the ankle joint. The center of the ankle should be coincided with the virtual stationary center during the rehabilitation process. Meanwhile, a complete information acquisition system was constructed to improve the human-machine interactivity among the robot, patients, and physicians. The physiological motion space (PMS) of ankle joint in the autonomous and boundary elliptical movements was obtained with the help of the RRR branch and absolute encoders. The natural extreme postures of the ankle complex are the superposition of the three typical movements at the boundary motions. Based on the kinematic model of PARR, the theoretical workspace (TWS) of the parallel mechanism was acquired using the limit boundary searching method and could encircle PMS completely. However, the effective workspace (EWS) was smaller than TWS due to the physical structure, volume, and interference of mechanical elements. In addition, EWS has more clinical significance for the ankle rehabilitation. The PARR prototype satisfies all single-axis rehabilitations of the ankle and can cover most compound motions of the ankle. The goodness of fit of PMS can reach 93.5%. Hence, the developed PARR can be applied to the ankle rehabilitation widely.


Assuntos
Tornozelo/fisiopatologia , Exoesqueleto Energizado , Reabilitação/instrumentação , Adulto , Desenho de Equipamento , Humanos , Masculino , Neuropatias Fibulares/reabilitação , Adulto Jovem
10.
Acta Bioeng Biomech ; 20(2): 23-33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30220712

RESUMO

PURPOSE: Trephination is one of the basic operations of keratoplasty, and the biomechanical mechanism of the operation can be revealed based on three-dimensional modeling and simulation of trephine cutting cornea. METHODS: Based on the analysis of the physical and biomechanical characteristics of corneal trephination, a three-dimensional numerical model of corneal trephination is built, where the cornea can be simplified to two layers structure including stroma and epithelium, and the trephine cuts the cornea under the vertical motion load and the rotational motion load. A three-dimensional failure criterion of corneal material is proposed based on the yield strength theory. On this basis, trephination simulation is carried out, and the units of corneal material are removed from the model when they meet the defined failure criterion. RESULTS: Under the given parameters including the velocity, the angle and the angular velocity, the trephine force curves, include the linear cutting force and the rotary cutting force are obtained, and show the change of the forces with displacement during the process of trephination simulation. The maps of the equivalent stress show the destruction and deformation of the cornea. Then, the experiment of robotic trephination is carried out under the same parameters and the effectiveness of the simulation is evaluated. CONCLUSIONS: Based on mechanics theory and finite element method, the process of trephine cutting cornea has been reproduced, and the interaction mechanism is revealed, which lays the foundation for the development of real-time simulation and virtual system of the corneal surgery.


Assuntos
Simulação por Computador , Córnea/cirurgia , Transplante de Córnea/métodos , Imageamento Tridimensional , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Robótica , Estresse Mecânico
11.
Protein Pept Lett ; 24(7): 643-648, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28464764

RESUMO

BACKGROUND: Compared with the wild type of lipase (WTL), mutant lipase 6B has twelve mutations (A15S, F17S, A20E, N89Y, G111D, L114P, A132D, M134E, M137P, I157M, S163P, N166Y). The melting temperature of 6B (78.2°C) is much higher than that of WTL (56°C). Hydrogen bond (HB) play an important role in stabilizing the protein. It is important to analyze how mutations affect hydrogen bond and hydrogen bond network and explain how hydrogen bond and hydrogen bond network affect lipase thermostability by the change of the intensity of HB and HB networks with temperature changing. OBJECTIVE: Study the dynamics of HB and HB networks to find that how HBs and HB networks change over time and over temperature in WTL and 6B. METHOD: Long time MD simulations of WTL and 6B are carried out to analyze how mutations affect hydrogen bond and hydrogen bond network. All proteins were simulated at 300K, 325K, 350K, 375K, 400K for 300ns respectively. The definition of HB is that the distance between acceptor and donor is smaller than a cutoff 3.0 Å and the angle between Donor-H and H-Acceptor is larger than 120o. If two or more HBs connect together, they formed HB network. In the network, residues that formed HB represent nodes, the HB interactions between residues represent edges. The persistence value of HB is computed by . RESULTS: The persistence values of HBs formed by mutations A15S, A20E, G111D, M137P, N166Y are significantly different from that of WTL. HB Glu20-Ser24, Asp111-Asp144, Leu160-Tyr166 and Lys170-Tyr166 are important to stabilize 6B. In addition, the HB networks dynamics show that there are three HB networks are more stable in mutants than that in WTL. The first HB network makes ß3, ß5, loop and 310-helix closely connect with each other at mutants. The second HB network increases the rigidity of the loop, αC, ß3 and ß5. The third HB network enhances the interaction between loops, αB and αC. CONCLUSION: The higher HB persistence value generally means that the HB is more stable. These mutations directly improve the stability of these HBs referring to their persistence values, which show that mutations strengthen the ability of HBs to withstand high temperature and then stabilize the secondary structure. It is thus clear that the mutations change the stability of HBs and the HB networks, which are responsible for increasing protein thermostability.


Assuntos
Bacillus subtilis/enzimologia , Estabilidade Enzimática/genética , Lipase/química , Conformação Proteica , Temperatura Alta , Ligação de Hidrogênio , Lipase/genética , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína
12.
Acta Bioeng Biomech ; 18(1): 65-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27150197

RESUMO

PURPOSE: This paper is mainly about biomechanical behavior of needle insertion into cornea, and proposes a failure criterion to simulate the insertion process which has attracted considerable attention due to its importance for the minimally invasive treatment. METHODS: In the process of needle insertion into cornea, tiny and complex insertion force is generated due to contact between needle and soft tissue. Based on the distortion energy theory, there is proposed a failure criterion of corneal material that can solve contact problem between rigid body and biological tissue in insertion simulation, where Cauchy stress of corneal material is the key to numerical calculation. A finite element model of in vivo cornea is built, and the cornea constrained by sclera is simplified to two layers containing epithelium and stroma. Considering the hyper-viscoelastic property of corneal material, insertion simulation is carried out. RESULTS: By insertion experiment, the insertion force increases with insertion depth accompanying obvious fluctuations. Different insertion forces are generated at different speeds. The punctured locations are obvious in the force-displacement curves. The results of insertion simulation are generally consistent with experimental data. Maps of von Mises stress reflect the tissue injury of the cornea during insertion process, and punctured status corresponds to the point in the curves. CONCLUSIONS: The ability of this study to reproduce the behavior of needle insertion into cornea opens a promising perspective for the control of robotic surgery operation as well as the real-time simulation of corneal suture surgery.


Assuntos
Simulação por Computador , Córnea/fisiologia , Agulhas , Animais , Fenômenos Biomecânicos , Análise de Elementos Finitos , Robótica , Estresse Mecânico , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA