Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(31): 37422-37432, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497870

RESUMO

Pursuing high energy and power density in all-solid-state lithium batteries (ASSLBs) has been the focus of attention. However, due to their inferior ion transport, their rate performance is limited compared to traditional lithium-ion batteries. Herein, a dual-coordination mechanism is first proposed to construct a high-performance poly(vinylidene fluoride)/Li6.4Ga0.2La3Zr2O12/succinonitrile (PVDF/LLZO/SN) composite solid electrolyte. The dual-coordination interactions of SN with both LLZO and Li+ in lithium salts allow SN to act like a branched chain of PVDF, realizing an increase in the free volume of the composite electrolyte. Meanwhile, SN molecules are immobilized within the electrolyte membrane by coordinating with LLZO, ensuring good interfacial stability. Profiting from the dual-coordination mechanism, the PVDF/LLZO/SN composite solid electrolyte combines enhanced electrochemical performance and interfacial compatibility. When applied to ASSLBs, the composite solid electrolyte enables the battery to operate at rates up to 6 C. The LiFePO4/Li batteries operated at 4 C can still deliver a high capacity retention rate of 96.4% after 50 cycles. Notably, these batteries also exhibit good long-cycle stability. After 500 cycles at 0.5 C, the discharge capacity was maintained at 145.9 mAh g-1.

2.
Small ; 19(34): e2301711, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093181

RESUMO

Solar-driven CO2 conversion into valuable fuels is a promising strategy to alleviate the energy and environmental issues. However, inefficient charge separation and transfer greatly limits the photocatalytic CO2 reduction efficiency. Herein, single-atom Pt anchored on 3D hierarchical TiO2 -Ti3 C2 with atomic-scale interface engineering is successfully synthesized through an in situ transformation and photoreduction method. The in situ growth of TiO2 on Ti3 C2 nanosheets can not only provide interfacial driving force for the charge transport, but also create an atomic-level charge transfer channel for directional electron migration. Moreover, the single-atom Pt anchored on TiO2 or Ti3 C2 can effectively capture the photogenerated electrons through the atomic interfacial PtO bond with shortened charge migration distance, and simultaneously serve as active sites for CO2 adsorption and activation. Benefiting from the synergistic effect of the atomic interface engineering of single-atom Pt and interfacial TiOTi, the optimized photocatalyst exhibits excellent CO2 -to-CO conversion activity of 20.5 µmol g-1  h-1 with a selectivity of 96%, which is five times that of commercial TiO2 (P25). This work sheds new light on designing ideal atomic-scale interface and single-atom catalysts for efficient solar fuel conversation.

3.
Small ; 19(30): e2300154, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060226

RESUMO

The oriented growth of ß-Ga2 O3 films has triggered extensive interest due to the remarkable and complex anisotropy found in the ß-Ga2 O3 bulks. Remarkable properties, including stronger solar-blind ultraviolet (SBUV) absorption, better mobility, and higher thermal conductivity, are usually observed along <010> direction as compared to other low-index axes. So far, <010>-oriented ß-Ga2 O3 film growth has been hindered by the lack of suitable substrates and higher surface energy of the (010) crystal plane. Herein, the first growth of uniquely <010>-oriented ß-Ga2 O3 films on quartz substrates by laser chemical vapor deposition (LCVD) are reported. By investigating the effects of deposition temperature (Tdep ) and O2 flow rate (RO2 ) on the growth of ß-Ga2 O3 films, it is found that the formation of <010> orientation is closely related to the higher stability of oxygen close-packed planes under O-rich condition. As a result, a grain size of up to ≈2 µm and a deposition rate of up to ≈ 40 µm h-1 are obtained. Metal-semiconductor-metal (MSM) type detector based on <010>-oriented ß-Ga2 O3 film exhibits ultra-fast response speed, 1-2 orders of magnitude higher than those of most detectors based on ß-Ga2 O3 films with other orientations.

4.
Heliyon ; 9(3): e13704, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915499

RESUMO

Hypervelocity impact in the universe can be generated by a three-stage gas gun. Achieving the desirable planarity of the flyer enlarges the experimentally effective area of the flyer under the hypervelocity condition. The multidimensional graded density impactor (MDGDI) enhances the planarity of the flyer. In this investigation, a one-dimensional Lagrange elastoplastic hydrodynamic method and a Euler grid finite difference method were used to examine the relationship between the structure of graded density impactors (GDIs) and the planarity of flyers. MDGDIs lead to a deviation of the stress wave produced by the one-dimensional graded density impactor (1DGDI), which offsets the stress disturbance effect, changes the velocity at each particle, and enhances the planarity of flyers. The proportion of flat areas of the flyer increases from 52.70% to 95.71% by adopting MDGDIs. The proportion of flat areas is linear with the wave impedance of the high-impedance layer for 1DGDIs and the wave impedance near the barrel of the high-impedance layer for MDGDIs. This investigation guides the design of GDIs and expands the application of gas gun technology in the field of hypervelocity impact.

5.
J Colloid Interface Sci ; 629(Pt B): 610-619, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36179580

RESUMO

Water electrolysis is a promising technique for producing high-quality hydrogen, the application of which is impeded by the sluggish oxygen evolution reaction (OER) process. In this study, ultrathin nickel-iron layered double hydroxide (NiFe LDH) nanosheets were successfully synthesized through a facile hydrothermal reaction with the assistance of triethanolamine (TEA). Morphological and structural characterizations revealed that the presence of TEA modified the morphology of NiFe LDH, facilitated the synthesis of high-purity NiFe LDH, improved the crystallinity of NiFe LDH and resulted in a slight decrease in specific surface area. X-ray photoelectron spectroscopy (XPS) analysis demonstrated the modulation of the electronic structure engendered by the addition of TEA, with nickel and iron appearing in high valence state in the resulting NiFe LDH nanosheets. The as-prepared NiFe LDH nanosheets possessed outstanding OER activity with fast kinetics, exhibiting a low overpotential of 261 mV to achieve a current density of 10 mA cm-2 and a small Tafel slope of 32.5 mV dec-1 in 1 M KOH. The excellent OER performance and rapid OER kinetics are mainly attributed to the high-valence Ni and Fe rather than the modification in the morphology and microstructure.

6.
ACS Appl Mater Interfaces ; 15(1): 2267-2276, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573932

RESUMO

Shear-thickening materials have been widely applied in fields related to smart impact protection due to their ability to absorb large amounts of energy during sudden shock. Shear-thickening materials with multifunctional properties are expanding their applications in wearable electronics, where tactile sensors require interconnected networks. However, current bifunctional shear-thickening cross-linked polymer materials depend on supramolecular networks or slightly dynamic covalently cross-linked networks, which usually exhibit lower energy-absorption density than the highly dynamic covalently cross-linked networks. Herein, we employed boric ester-based covalent adaptive networks (CANs) to elucidate the shear-thickening property and the mechanism of energy dissipation during sudden shock. Guided by the enhanced energy-absorption capability of double networks and the requirements of the conductive networks for the wearable tactile sensors, tungsten powders (W) were incorporated into the boric ester polymer matrix to form a second network. The W networks make the materials stiffer, with a 13-fold increase in Young's modulus. Additionally, the energy-absorption capacity increased nearly 7 times. Finally, we applied these excellent energy-absorbing and conductive materials to bifunctional shock-protective and strain rate-dependent tactile sensors. Considering the self-healable and recyclable properties, we believe that these anti-impact and tactile sensing materials will be of great interest in wearable devices, smart impact-protective systems, post-tunable materials, etc.

7.
Materials (Basel) ; 15(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35888301

RESUMO

With the need of developing new materials, exploring new phenomenon, and discovering new mechanisms under extreme conditions, the response of materials to high-pressure compression attract more attention. However, the high-pressure state deviating from the Hugoniot line is difficult to realize by conventional experiments. Gas gun launching graded materials could reach the state. In our work, the corresponding Al-Cu composites and graded materials are prepared by tape casting and hot-pressing sintering. The microstructure and the acoustic impedance of the corresponding Al-Cu composites are analyzed to explain the impact behavior of Al-Cu graded materials. Computed tomographic testing and three-dimension surface profilometry machine results demonstrated well-graded structure and parallelism of the graded material. Al-Cu GMs with good parallelism are used to impact the Al-LiF target at 2.3 km/s using a two-stage light-gas gun, with an initial shock impact of 20.6 GPa and ramping until 27.2 GPa, deviating from the Hugoniot line.

8.
Polymers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641100

RESUMO

Cellular media materials are used for automobiles, aircrafts, energy-efficient buildings, transportation, and other fields due to their light weight, designability, and good impact resistance. To devise a buffer structure reasonably and avoid resource and economic loss, it is necessary to completely comprehend the constitutive relationship of the buffer structure. This paper introduces the progress on research of the mechanical properties characterization, constitutive equations, and numerical simulation of porous structures. Currently, various methods can be used to construct cellular media mechanical models including simplified phenomenological constitutive models, homogenization algorithm models, single cell models, and multi-cell models. This paper reviews current key mechanical models for cellular media, attempting to track their evolution from their inception to their latest development. These models are categorized in terms of their mechanical modeling methods. This paper focuses on the importance of constitutive relationships and microstructure models in studying mechanical properties and optimizing structural design. The key issues concerning this topic and future directions for research are also discussed.

9.
Nat Commun ; 12(1): 881, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564001

RESUMO

(K,Na)NbO3 based ceramics are considered to be one of the most promising lead-free ferroelectrics replacing Pb(Zr,Ti)O3. Despite extensive studies over the last two decades, the mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics has not been fully understood. Here, we combine temperature-dependent synchrotron x-ray diffraction and property measurements, atomic-scale scanning transmission electron microscopy, and first-principle and phase-field calculations to establish the dopant-structure-property relationship for multi-elements doped (K,Na)NbO3 ceramics. Our results indicate that the dopants induced tetragonal phase and the accompanying high-density nanoscale heterostructures with low-angle polar vectors are responsible for the high dielectric and piezoelectric properties. This work explains the mechanism of the high piezoelectricity recently achieved in (K,Na)NbO3 ceramics and provides guidance for the design of high-performance ferroelectric ceramics, which is expected to benefit numerous functional materials.

10.
Sci Rep ; 10(1): 16856, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033350

RESUMO

Solute segregating to grain boundary can stabilize the microstructure of nanocrystalline materials, but a lot of solutes also cause embrittlement effect on interfacial strength. Therefore, uncovering the solute effect on grain boundary strength is very important for nanocrystalline alloys design. In this work, we have systematically studied the effects of various solutes on the strength of a Σ5 (310) grain boundary in Cu by first-principle calculations. The solute effects are closely related to the atomic radius of solutes and electronic interactions between solutes and Cu. The solute with a larger atomic radius is easier to segregate the grain boundary but causes more significant grain boundary embrittlement. The weak electronic interactions between the s- and p-block solutes and Cu play a very limited role in enhancing grain boundary strength. While the strong d-states electronic interactions between transition metallic solutes and Cu can counteract embrittlement caused by size mismatch and significantly improve the grain boundary strength. This work deepens our understanding of solute effects on grain boundary strength based on atomic size and electronic interactions.

11.
Materials (Basel) ; 13(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218264

RESUMO

A colloidal stability study of a nonaqueous silicon carbide suspension is of great significance for preparing special silicon carbide ceramics by colloidal processing. In this paper, three different chemical dispersants, which are amphiphilic, acidophilic, and alkaliphilic, are selected to compare their ability to stabilize nonaqueous slurries of silicon carbide. The analysis of the flow index factor is first used to estimate the colloidal stability of the suspensions. The results show that the addition of only 5 wt.% polyvinylpyrrolidone (PVP) forms a silicon carbide slurry with a low viscosity value of 17 mPas at 25 s-1. In addition, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS)measurements indicate that the PVP molecule is successfully adsorbed on the surface of silicon carbide. The different adsorption models are fitted, and the adsorption of PVP molecules on the surface of silicon carbide belongs to the Langmuir single-layer adsorption model. At the optimal PVP amount, the volume content of the suspension is as high as 22.27 vol.%, a Newtonian-like fluid still appears, and no agglomerate structure is formed in the system. After the volume content exceeds 22.27 vol.%, the flow index factor of the slurry begins to plummet, indicating that the slurry begins to transform from a Newtonian-like fluid to a shear-thinning fluid. The particles undergo inevitable agglomeration accompanied by the emergence of yield stress. Finally, a maximum solid loading of the system is predicted to be 46 vol.%, using the Krieger-Dougherty model.

12.
Nanomaterials (Basel) ; 10(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121374

RESUMO

This research presents an approach for C-O grain boundary strengthening of Al composites that used an in situ method to synthesize a C-O shell on Al powder particles in a vertical tube furnace. The C-O reinforced Al matrix composites (C-O/Al composites) were fabricated by a new powder metallurgy (PM) method associated with the hot pressing technique. The data indicates that Al4C3 was distributed within the Al matrix and an O-Al solution was distributed in the grain boundaries in the strengthened structure. The formation mechanism of this structure was explained by a combination of TEM observations and molecular dynamic simulation results. The yield strength and ultimate tensile strength of the C-O/Al composites, modified by 3 wt.% polyvinyl butyral, reached 232.2 MPa and 304.82 MPa, respectively; compared to the yield strength and ultimate tensile strength of the pure aluminum processed under the same conditions, there was an increase of 124% and 99.3%, respectively. These results indicate the excellent properties of the C-O/Al-strengthened structure. In addition, the strengthening mechanism was explained by the Hall-Petch strengthening, dislocation strengthening, and solid solution strengthening mechanisms, which represented contributions of nearly 44.9%, 15.9%, and 16.6% to the total increased strength, respectively. The remaining increment was attributed to the coupled strengthening of the C and O, which contributed 20.6% to the total increase.

13.
Materials (Basel) ; 13(6)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183474

RESUMO

A peridynamic (PD) model of functionally graded materials (FGMs) is presented to simulate transient heat conduction in the FGM plate with insulated cracks. The surface correction is considered in the model to reduce the surface effect near the domain boundary and insulated cracks. In order to verify the proposed model, a numerical example for the FGM plate is carried out. The results show good agreement with the analytical solution. The convergence of the model with the surface correction for FGMs without cracks is then investigated. The results reveal that our model converges to the classical solutions in the limit of the horizon going to zero. The effects of two material points discretization schemes on the accuracy of numerical results are investigated. For transient heat conduction of FGMs with a static crack, the results obtained from the proposed PD model agree well with that from the finite element method. Finally, transient heat conduction of the FGM plate with a dynamic horizontal crack and intersecting cracks is simulated and discussed.

14.
Polymers (Basel) ; 12(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028727

RESUMO

In this study, we fabricated poly (methyl methacrylate) (PMMA) microcellular foams featuring tunable cellular structures and porosity, through adjusting the supercritical CO2 foaming conditions. Experimental testing and finite element model (FEM) simulations were conducted to systematically elucidate the influence of the foaming parameters and structure on compressive properties of the foam. The correlation between the cellular structure and mechanical properties was acquired by separating the effects of the cell size and foam porosity. It was found that cell size reduction contributes to improved mechanical properties, which can be attributed to the dispersion of stress and decreasing stress concentration.

15.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952320

RESUMO

Doping of nitrogen is a promising approach to improve the electrical conductivity of 3C-SiC and allow its application in various fields. N-doped, <110>-oriented 3C-SiC bulks with different doping concentrations were prepared via halide laser chemical vapour deposition (HLCVD) using tetrachlorosilane (SiCl4) and methane (CH4) as precursors, along with nitrogen (N2) as a dopant. We investigated the effect of the volume fraction of nitrogen (ϕN2) on the preferred orientation, microstructure, electrical conductivity (σ), deposition rate (Rdep), and optical transmittance. The preference of 3C-SiC for the <110> orientation increased with increasing ϕN2. The σ value of the N-doped 3C-SiC bulk substrates first increased and then decreased with increasing ϕN2, reaching a maximum value of 7.4 × 102 S/m at ϕN2 = 20%. Rdep showed its highest value (3000 µm/h) for the undoped sample and decreased with increasing ϕN2, reaching 1437 µm/h at ϕN2 = 30%. The transmittance of the N-doped 3C-SiC bulks decreased with ϕN2 and showed a declining trend at wavelengths longer than 1000 nm. Compared with the previously prepared <111>-oriented N-doped 3C-SiC, the high-speed preparation of <110>-oriented N-doped 3C-SiC bulks further broadens its application field.

16.
Angew Chem Int Ed Engl ; 59(7): 2802-2807, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31830354

RESUMO

Near-UV-pumped white-light-emitting diodes with ultra-high color rendering and decreased blue-light emission is highly desirable. However, discovering a single-phase white light emitter with such characteristics remains challenging. Herein, we demonstrate that Mn doping as low as 0.027 % in the hybrid post-perovskite type (TDMP)PbBr4 (TDMP=trans-2,5-dimethylpiperaziniium) enables to achieve a bright pure white emission replicating the spectrum of the sun's rays. Thus, a white phosphor exhibiting an emission with CIE coordinates (0.330, 0.365), a high photoluminescence quantum yield of 60 % (new record for white light emission of hybrid lead halides), and an ultra-high color rendering index (CRI=96, R9=91.8), corresponding to the record value for a single phase emitter was obtained. The investigation of the photoluminescence properties revealed how free excitons, self-trapped excitons, and low amount of Mn dopants are coupled to give rise to such pure white emission.

17.
Polymers (Basel) ; 11(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277266

RESUMO

Investigating the constitutive relationship of a material can provide better understanding of the mechanical properties of a material and has an irreplaceable effect on optimizing the performance of a material. This paper investigated a constitutive model for tungsten/polymethyl-methacrylate (W/PMMA) composite microcellular foams prepared by using melt mixing and supercritical carbon dioxide foaming. The stress-strain relationships of these foams with different W contents were measured under static compression. The elastic modulus and compressive strength values of the foams were remarkably greater than those of the pure PMMA foams: at a W content of 20 wt %, these values were increased by 269.1% and 123.9%, respectively. Based on the Maxwell constitutive model, the relevant coefficients were fitted according to the experimental data of different relative densities and W contents in quasi-static compression. According to the numerical relationships between the relevant coefficients and the relative densities and W contents, the quasi-static mechanical constitutive model of W/PMMA composite microcellular foams with W contents of 0~60 wt % and relative densities of 0.15~0.55 were predicted. This study provided basic data for the optimal design of the W/PMMA composite microcellular foams and proposed a method for investigating the mechanical properties of composite microcellular foam materials.

18.
ACS Appl Mater Interfaces ; 11(33): 30376-30383, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31361946

RESUMO

In this study, artificial multiferroic Ba0.85Ca0.15Zr0.1Ti0.9O3/La0.67Ca0.33MnO3(BCZT/LCMO) epitaxial heterostructures were deposited on Nb-doped SrTiO3 substrates using pulsed laser deposition. The epitaxial growth of the heterostructures on the substrate was demonstrated by XRD, RSM, and TEM analyses, which displayed decreasing residual strain with increasing BCZT layer thickness. The electrical, magnetic, and magnetoelectric properties of the epitaxial heterostructures were investigated in detail, and they were sensitive to the varying BCZT layer thickness in terms of residual strain. The multiferroic nature of the heterostructures was demonstrated by ferroelectric and ferromagnetic hysteresis loops. Strain-mediated magnetoelectric behavior was observed in the epitaxial heterostructures. Finally, dielectric properties were enhanced in the heterostructures over the BCZT single layer film, and the maximum magnetoelectric coefficient of the heterostructures was 206.5 mV/cm·Oe.

19.
Rev Sci Instrum ; 90(1): 013903, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709225

RESUMO

A three-stage gas gun, composed of a two-stage gas gun and the add-on part, has been developed to launch high-Z (tantalum, for example) flyer plates up to 10 km/s for ultrahigh-pressure Hugoniot measurements. Great care has been taken to optimize the add-on part in which a specially designed graded density impactor is employed to quasi-isentropically accelerate the high-Z flyer plate for maximizing its impact velocity. The shock wave in the target generated by the flyer plate is characterized with the flatness of the shock-front better than 1 ns in the concerned area and the uncertainty of the shock-wave velocity less than 2%, thus satisfying the requirements for high-precision Hugoniot measurements. As a demonstration, we measured the ultrahigh-pressure Hugoniot equation of state of tantalum ranging from 0.45 TPa to 0.85 TPa with a symmetric impacting geometry in which the shock-wave velocity and the particle velocity are simultaneously determined. The results obtained are well consistent with data available in the literature, indicating the extended capability of the gas-gun launcher technique.

20.
Materials (Basel) ; 12(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704091

RESUMO

Direct-current magnetron sputtering (DCMS) was applied to prepare vanadium (V) films on Si substrate. The influence of substrate temperature (Ts) and target⁻substrate distance (Dt⁻s) on phase structure and surface morphology of V films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and transmission electron microscopy (TEM). The results show that the crystallinity of the V films increases with increasing Ts and decreasing Dt⁻s. The film deposited at Ts = 400 °C and Dt⁻s = 60 mm exhibits the best crystallinity and <111> preferred orientation with a regular tetrahedral surface morphology. Oxidation behavior of the V thin films has also been studied by X-ray photoelectron spectroscopy (XPS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA