Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
HardwareX ; 14: e00405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36950388

RESUMO

Automated feeders have long fed mice, livestock, and poultry, but are incapable of feeding zoo animals such as gorillas. In captivity, gorillas eat cut vegetables and fruits in pieces too large to be dispensed by automated feeders. Consequently, captive gorillas are fed manually at set times and locations, keeping them from the exercise and enrichment that accompanies natural foraging. We designed and built ForageFeeder, an automated gorilla feeder that spreads food at random intervals throughout the day. ForageFeeder is an open source and easy to manufacture and modify device, making the feeder more accessible for zoos. The design presented here reduces manual labor for zoo staff and may be a useful tool for studies of animal ethology.

2.
Biophys Rev ; 14(1): 23-32, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340594

RESUMO

Human immunodeficiency virus (HIV) is the most extensively researched human pathogen. Despite this massive scientific endeavour, several fundamental viral processes remain enigmatic. One such critical process is uncoating-the event that releases the viral genome from the proteinaceous shell of the capsid during infection. While this process is conceptually simple, the molecular underpinnings, timing, regulation, and cellular location of uncoating remain contentious. This review describes the hurdles that have limited our understanding in this area and presents recently deployed in vitro and in cellulo techniques that have been developed expressly with the aim of directly visualising capsid uncoating at the single-particle level and understanding the mechanics behind this essential aspect of HIV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA