Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(18): 6891-6896, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725498

RESUMO

Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 µm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.

2.
ACS Appl Mater Interfaces ; 16(1): 1107-1113, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150824

RESUMO

Noncentrosymmetric phosphides have garnered significant attention as promising systems of infrared (IR) nonlinear optical (NLO) materials. Herein, a new quaternary diamond-like phosphide family I-III-IV2-V4 and its inaugural member, namely, CuInSi2P4 (CISP), were successfully fabricated by isovalent and aliovalent substitution based on ZnGeP2. First-principles calculations revealed that CISP has a large NLO coefficient (d14 = 110.8 pm/V), which can be attributed to the well-aligned tetrahedral [CuP4], [InP4], and [SiP4] units. Remarkably, the extremely small thermal expansion anisotropy (0.09) of CISP enables it to exhibit a considerable laser-induced damage threshold (LIDT, 5.0 × AgGaS2@1.06 µm) despite the relatively narrow band gap (0.81 eV). This work improves the chemical diversity of inorganic phosphide and promotes the development of phosphide systems, which may provide valuable perspectives for future exploration of IR NLO materials.

3.
Waste Manag ; 174: 528-538, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134540

RESUMO

Feather waste, a rich source of proteins, has traditionally been processed through high-temperature puffing and acid-base hydrolysis, contributing to generation of greenhouse gases and H2S. To address this issue, we employed circular economy techniques to recover the nutritional value of feather waste. Streptomyces sp. SCUT-3, an efficient proteolytic and chitinolytic bacterium, was isolated for feather degradation previously. This study aimed to valorize feather waste for feed purposes by enhancing its feather transformation ability through promoter optimization. Seven promoters were identified through omics analysis and compared to a common Streptomyces promoter ermE*p. The strongest promoter, p24880, effectively enhanced the expression of three candidate keratinases (Sep39, Sep40, and Sep53). The expression efficiency of double-, triple-p24880 and sandwich p24880-sep39-p24880 promoters were further verified. The co-overexpression strain SCUT-3-p24880-sep39-p24880-sep40 exhibited a 16.21-fold increase in keratinase activity compared to the wild-type. Using this strain, a solid-state fermentation process was established that increased the feather/water ratio (w/w) to 1:1.5, shortened the fermentation time to 2.5 days, and increased soluble peptide and free amino acid yields to 0.41 g/g and 0.14 g/g, respectively. The resulting has high protein content (90.49 %), with high in vitro digestibility (94.20 %). This method has the potential to revolutionize the feather waste processing industry.


Assuntos
Plumas , Streptomyces , Animais , Plumas/química , Streptomyces/genética , Streptomyces/metabolismo , Fermentação , Galinhas/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/química , Queratinas/metabolismo , Concentração de Íons de Hidrogênio
4.
Small ; 19(37): e2302088, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144451

RESUMO

Cations that can regulate the configuration of anion group are greatly important but regularly unheeded. Herein, the structural transformation from 2D CS to 3D noncentrosymmetric (NCS, which is the prerequisite for second-order NLO effect) is rationally designed to newly afford two sulfides LiMGa8 S14 (M = Rb/Ba, 1; Cs/Ba, 2) by introducing the smallest alkali metal Li+ cation into the interlamination of 2D centrosymmetric (CS) RbGaS2 . The unusual frameworks of 1 and 2 are constructed from C2 -type [Ga4 S11 ] supertetrahedrons in a highly parallel arrangement. 1 and 2 display distinguished NLO performances, including strong phase-matchable second-harmonic generation (SHG) intensities (0.8 and 0.9 × AgGaS2 at 1910 nm), wide optical band gaps (3.24 and 3.32 eV), and low coefficient of thermal expansion for favorable laser-induced damage thresholds (LIDTs, 4.7, and 7.6 × AgGaS2 at 1064 nm), which fulfill the criteria of superior NLO candidates (SHG intensity >0.5 × AGS and band gap >3.0 eV). Remarkably, 1 and 2 melt congruently at 873.8 and 870.5 °C, respectively, which endows them with the potential of growing bulk crystals by the Bridgeman-Stockbarge method. This investigated system provides a new avenue for the structural evolution from layered CS to 3D NCS of NLO materials.

5.
Int J Biol Macromol ; 225: 987-996, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403764

RESUMO

The genus Streptomyces comprises the most important chitin decomposers in soil and revealing their chitinolytic machinery is beneficial for the conversion of chitinous wastes. Streptomyces sp. SCUT-3, a chitin-hydrolyzing and a robust feather-degrading bacterium, was isolated previously. The potential chitin-degrading enzymes produced by SCUT-3 were analyzed in the present study. Among these enzymes, three chitinases were successfully expressed in Pichia pastoris at comparatively high yields of 4.8 U/mL (SsExoChi18A), 11.2 U/mL (SsExoChi18B), and 17.8 U/mL (SsEndoChi19). Conserved motifs and constructive 3D structures of these three exo- and endochitinases were also analyzed. These chitinases hydrolyzed colloidal chitin to chitin oligomers. SsExoChi18A showed apparent synergic effects with SsEndoChi19 in colloidal chitin and shrimp shell hydrolysis, with an improvement of 29.3 % and 124.9 %, respectively. Compared with SsExoChi18B and SsEndoChi19, SsExoChi18A exhibited the strongest antifungal effects against four plant pathogens by inhibiting mycelial growth and spore germination. This study provided good candidates for chitinous waste-processing enzymes and antifungal biocontrol agents. These synergic chitin-degrading enzymes of SCUT-3 are good targets for its further genetical modification to construct super chitinous waste-degrading bacteria with strong abilities to hydrolyze both protein and chitin, thereby providing a direction for the future path of the chitinous waste recycling industry.


Assuntos
Quitinases , Streptomyces , Quitina/química , Quitinases/química , Antifúngicos/farmacologia , Fungos/metabolismo
6.
Commun Biol ; 3(1): 191, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332852

RESUMO

Feather waste is the highest protein-containing resource in nature and is poorly reused. Bioconversion is widely accepted as a low-cost and environmentally benign process, but limited by the availability of safe and highly efficient feather degrading bacteria (FDB) for its industrial-scale fermentation. Excessive focuses on keratinase and limited knowledge of other factors have hindered complete understanding of the mechanisms employed by FDB to utilize feathers and feather cycling in the biosphere. Streptomyces sp. SCUT-3 can efficiently degrade feather to products with high amino acid content, useful as a nutrition source for animals, plants and microorganisms. Using multiple omics and other techniques, we reveal how SCUT-3 turns on its feather utilization machinery, including its colonization, reducing agent and protease secretion, peptide/amino acid importation and metabolism, oxygen consumption and iron uptake, spore formation and resuscitation, and so on. This study would shed light on the feather utilization mechanisms of FDBs.


Assuntos
Proteínas Aviárias/metabolismo , Proteínas de Bactérias/metabolismo , Plumas/microbiologia , Peptídeo Hidrolases/metabolismo , Streptomyces/enzimologia , Resíduos , beta-Queratinas/metabolismo , Animais , Proteínas de Bactérias/genética , Biodegradação Ambiental , Plumas/metabolismo , Peptídeo Hidrolases/genética , Proteólise , Streptomyces/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA