Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Front Plant Sci ; 15: 1417632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966139

RESUMO

Introduction: Abscisic acid (ABA) can negatively regulate seed germination, but the mechanisms of ABA-mediated metabolism modulation are not well understood. Moreover, it remains unclear whether metabolic pathways vary with the different tissue parts of the embryo, such as the radicle, hypocotyl and cotyledon. Methods: In this report, we performed the first comprehensive metabolome analysis of the radicle and hypocotyl + cotyledon in Pinus koraiensis seeds in response to ABA treatment during germination. Results and discussion: Metabolome profiling showed that following ABA treatment, 67 significantly differentially accumulated metabolites in the embryo were closely associated with pyrimidine metabolism, phenylalanine metabolism, cysteine and methionine metabolism, galactose metabolism, terpenoid backbone biosynthesis, and glutathione metabolism. Meanwhile, 62 metabolites in the hypocotyl + cotyledon were primarily involved in glycerophospholipid metabolism and glycolysis/gluconeogenesis. We can conclude that ABA may inhibit Korean pine seed germination primarily by disrupting the biosynthesis of certain plant hormones mediated by cysteine and methionine metabolism and terpenoid backbone biosynthesis, as well as reducing the reactive oxygen species scavenging ability regulated by glutathione metabolism and shikimate pathway in radicle. ABA may strongly disrupt the structure and function of cellular membranes due to alterations in glycerophospholipid metabolism, and weaken glycolysis/gluconeogenesis in the hypocotyl + cotyledon, both of which are major contributors to ABA-mediated inhibition of seed germination. These results highlight that the spatial modulation of metabolic pathways in Pinus koraiensis seeds underlies the germination response to ABA.

2.
Pediatrics ; 154(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832449

RESUMO

OBJECTIVE: With this study, we aimed to estimate the disease burden attributable to child and maternal malnutrition (CMM) throughout the world between 1990 and 2019. METHODS: The number, age-standardized rate, population attributable fraction of deaths, disability-adjusted life-years, years of life lost, and years lived with disability associated with CMM were estimated using the Global Burden of Disease Study 2019 by age, sex, year, location, and sociodemographic index at the global level. The slope index of inequality and concentration index were employed to measure socioeconomic-related health inequalities across countries. RESULTS: The number (million) of global deaths, disability-adjusted life-years, and years of life lost related to CMM were 2.9, 294.8, and 250.5 in 2019, showing decreases of 60.8, 57.4, and 60.7% since 1990. However, the number of years lived with CMM-related disability increased from 36.0 in 1990 to 44.3 in 2019. Additionally, the age-standardized rates of these 4 indicators showed varying degrees of decline. The global burden of CMM-related conditions differed with age and sex. The burden was the heaviest in western sub-Saharan Africa, especially in Chad. In terms of diseases, neonatal disorders represented the most significant burden attributed to CMM. Additionally, the CMM burden was more concentrated in regions with low sociodemographic indices, shown by the slope index of inequality and concentration index. CONCLUSIONS: The findings of this study highlight the ongoing global burden of CMM, particularly in terms of years lived with disability. Population-wide actions targeting the effective treatment and relief of CMM may reduce the CMM-related disease burden.


Assuntos
Anos de Vida Ajustados por Deficiência , Carga Global da Doença , Humanos , Carga Global da Doença/tendências , Feminino , Pré-Escolar , Masculino , Criança , Lactente , Anos de Vida Ajustados por Deficiência/tendências , Desnutrição/epidemiologia , Saúde Global , Transtornos da Nutrição Infantil/epidemiologia , Recém-Nascido , Adolescente , Gravidez , Efeitos Psicossociais da Doença
3.
Foods ; 13(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38890982

RESUMO

Dietary intake of natural substances to regulate physiological functions is currently regarded as a potential way of promoting health. As one of the recommended dietary ingredients, phytosterols that are natural bioactive compounds distributed in plants have received increasing attention for their health effects. Phytosterols have attracted great attention from scientists because of many physiological functions, for example, cholesterol-lowering, anticancer, anti-inflammatory, and immunomodulatory effects. In addition, the physiological functions of phytosterols, the purification, structure analysis, synthesis, and food application of phytosterols have been widely studied. Nowadays, many bioactivities of phytosterols have been assessed in vivo and in vitro. However, the mechanisms of their pharmacological activities are not yet fully understood, and in-depth investigation of the relationship between structure and function is crucial. Therefore, a contemporaneous overview of the extraction, beneficial properties, and the mechanisms, as well as the current states of phytosterol application, in the food field of phytosterols is provided in this review.

4.
Int J Biol Macromol ; 274(Pt 2): 133326, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925198

RESUMO

Tyrosinase is a biological macromolecule closely related to browning of fruit and vegetables, melanin production, and tyrosinase inhibitors are usually used to prevent browning and pigmentation. In this study, longan shell tannins (LSTs) were screened as tyrosinase inhibitors and their structures were proved to be mixtures of procyanidins (condensed tannins) and ellagitannins (hydrolyzed tannins). Enzymatic experiments verified that LSTs were efficient inhibitors, and the IC50 values for monophenolase and bisphenolase were 176.04 ± 10 and 59.94 ± 5 µg mL-1, respectively. Fluorescence detections and molecular docking revealed that the combination of LSTs to tyrosinase was mainly driven by hydrogen bonding, hydrophobic interaction, as well as van der Waals force, which changed the microenvironment of tyrosine and tryptophan residues as well as enzyme conformation. Circular dichroism and molecular dynamics simulation showed that LSTs affected secondary structures of tyrosinase, resulting in structural stretching and conformational modification of the enzyme. In addition, preservation studies demonstrated that LSTs owned the ability to delay the browning of fresh-cut apples by inhibiting phenolic metabolism, strengthening the antioxidant system, and reducing lipid peroxidation. This paper testified that LSTs are exteaordinary tyrosinase inhibitors, and offered a scientific foundation for the application of LSTs in food industry and medicine.

5.
Bone Res ; 12(1): 37, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910207

RESUMO

Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis. Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis. Here, we used tooth root development as a model to explore the roles of FGF signaling and mechanotransduction as well as their interaction in regulating the progenitor cell fate decision. We show that Fgfr1 is expressed in the mesenchymal progenitor cells and their progeny during tooth root development. Loss of Fgfr1 in Gli1+ progenitors leads to hyperproliferation and differentiation, which causes narrowed periodontal ligament (PDL) space with abnormal cementum/bone formation leading to ankylosis. We further show that aberrant activation of WNT signaling and mechanosensitive channel Piezo2 occurs after loss of FGF signaling in Gli1-CreER;Fgfr1fl/fl mice. Overexpression of Piezo2 leads to increased osteoblastic differentiation and decreased Piezo2 leads to downregulation of WNT signaling. Mechanistically, an FGF/PIEZO2/WNT signaling cascade plays a crucial role in modulating the fate of progenitors during root morphogenesis. Downregulation of WNT signaling rescues tooth ankylosis in Fgfr1 mutant mice. Collectively, our findings uncover the mechanism by which FGF signaling regulates the fate decisions of stem/progenitor cells, and the interactions among signaling pathways and mechanotransduction during tooth root development, providing insights for future tooth root regeneration.


Assuntos
Fatores de Crescimento de Fibroblastos , Mecanotransdução Celular , Raiz Dentária , Via de Sinalização Wnt , Animais , Via de Sinalização Wnt/fisiologia , Raiz Dentária/crescimento & desenvolvimento , Raiz Dentária/metabolismo , Raiz Dentária/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Diferenciação Celular , Células-Tronco/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Canais Iônicos
6.
Foods ; 13(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928761

RESUMO

The efficacy of selenium-chelating polypeptides derived from wheat protein hydrolysate (WPH-Se) includes enhancing antioxidant capacity, increasing bioavailability, promoting nutrient absorption, and improving overall health. This study aimed to enhance the bioavailability and functional benefits of exogenous selenium by chelating with wheat gluten protein peptides, thereby creating bioactive peptides with potentially higher antioxidant capabilities. In this study, WPH-Se was prepared with wheat peptide and selenium at a mass ratio of 2:1, under a reaction system at pH 8.0 and 80 °C. The in vitro antioxidant activity of WPH-Se was evaluated by determining the DPPH, OH, and ABTS radical scavenging rate and reducing capacity under different conditions, and the composition of free amino acids and bioavailability were also investigated at various digestion stages. The results showed that WPH-Se possessed significant antioxidant activities under different conditions, and DPPH, OH, and ABTS radical scavenging rates and reducing capacity remained high at different temperatures and pH values. During gastrointestinal digestion in vitro, both the individual digestate and the final digestate maintained high DPPH, OH, and ABTS radical scavenging rates and reducing capacity, indicating that WPH-Se was able to withstand gastrointestinal digestion and exert antioxidant effects. Post-digestion, there was a marked elevation in tryptophan, cysteine, and essential amino acids, along with the maintenance of high selenium content in the gastrointestinal tract. These findings indicate that WPH-Se, with its enhanced selenium and amino acid profile, serves as a promising ingredient for dietary selenium and antioxidant supplementation, potentially enhancing the nutritional value and functional benefits of wheat gluten peptides.

7.
Curr Opin Organ Transplant ; 29(4): 228-238, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38726745

RESUMO

PURPOSE OF REVIEW: Machine perfusion has been adopted into clinical practice in Europe since the mid-2010s and, more recently, in the United States (US) following approval of normothermic machine perfusion (NMP). We aim to review recent advances, provide discussion of potential future directions, and summarize challenges currently facing the field. RECENT FINDINGS: Both NMP and hypothermic-oxygenated perfusion (HOPE) improve overall outcomes after liver transplantation versus traditional static cold storage (SCS) and offer improved logistical flexibility. HOPE offers additional protection to the biliary system stemming from its' protection of mitochondria and lessening of ischemia-reperfusion injury. Normothermic regional perfusion (NRP) is touted to offer similar protective effects on the biliary system, though this has not been studied prospectively.The most critical question remaining is the optimal use cases for each of the three techniques (NMP, HOPE, and NRP), particularly as HOPE and NRP become more available in the US. There are additional questions regarding the most effective criteria for viability assessment and the true economic impact of these techniques. Finally, with each technique purported to allow well tolerated use of riskier grafts, there is an urgent need to define terminology for graft risk, as baseline population differences make comparison of current data challenging. SUMMARY: Machine perfusion is now widely available in all western countries and has become an essential tool in liver transplantation. Identification of the ideal technique for each graft, optimization of viability assessment, cost-effectiveness analyses, and proper definition of graft risk are the next steps to maximizing the utility of these powerful tools.


Assuntos
Sobrevivência de Enxerto , Transplante de Fígado , Preservação de Órgãos , Perfusão , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Transplante de Fígado/tendências , Perfusão/métodos , Perfusão/efeitos adversos , Perfusão/tendências , Perfusão/instrumentação , Preservação de Órgãos/métodos , Preservação de Órgãos/tendências , Preservação de Órgãos/efeitos adversos , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/etiologia , Resultado do Tratamento , Fatores de Risco , Isquemia Fria/efeitos adversos , Animais
8.
Cell Stem Cell ; 31(6): 904-920.e6, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38703771

RESUMO

Mesenchymal stem cells (MSCs) reside in niches to maintain tissue homeostasis and contribute to repair and regeneration. Although the physiological functions of blood and lymphatic vasculature are well studied, their regulation of MSCs as niche components remains largely unknown. Using adult mouse incisors as a model, we uncover the role of Trp53 in regulating vascular composition through THBS2 to maintain mesenchymal tissue homeostasis. Loss of Trp53 in GLI1+ progeny increases arteries and decreases other vessel types. Platelet-derived growth factors from arteries deposit in the MSC region and interact with PDGFRA and PDGFRB. Significantly, PDGFRA+ and PDGFRB+ cells differentially contribute to defined cell lineages in the adult mouse incisor. Collectively, our results highlight Trp53's importance in regulating the vascular niche for MSCs. They also shed light on how different arterial cells provide unique cues to regulate MSC subpopulations and maintain their heterogeneity. Furthermore, they provide mechanistic insight into MSC-vasculature crosstalk.


Assuntos
Incisivo , Células-Tronco Mesenquimais , Transdução de Sinais , Proteína Supressora de Tumor p53 , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Incisivo/citologia , Incisivo/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
9.
Nat Commun ; 15(1): 4614, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816354

RESUMO

ARID1B haploinsufficiency in humans causes Coffin-Siris syndrome, associated with developmental delay, facial dysmorphism, and intellectual disability. The role of ARID1B has been widely studied in neuronal development, but whether it also regulates stem cells remains unknown. Here, we employ scRNA-seq and scATAC-seq to dissect the regulatory functions and mechanisms of ARID1B within mesenchymal stem cells (MSCs) using the mouse incisor model. We reveal that loss of Arid1b in the GLI1+ MSC lineage disturbs MSCs' quiescence and leads to their proliferation due to the ectopic activation of non-canonical Activin signaling via p-ERK. Furthermore, loss of Arid1b upregulates Bcl11b, which encodes a BAF complex subunit that modulates non-canonical Activin signaling by directly regulating the expression of activin A subunit, Inhba. Reduction of Bcl11b or non-canonical Activin signaling restores the MSC population in Arid1b mutant mice. Notably, we have identified that ARID1B suppresses Bcl11b expression via specific binding to its third intron, unveiling the direct inter-regulatory interactions among BAF subunits in MSCs. Our results demonstrate the vital role of ARID1B as an epigenetic modifier in maintaining MSC homeostasis and reveal its intricate mechanistic regulatory network in vivo, providing novel insights into the linkage between chromatin remodeling and stem cell fate determination.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Mesenquimais , Proteínas Repressoras , Transdução de Sinais , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proliferação de Células , Ativinas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Humanos , Proteína GLI1 em Dedos de Zinco
10.
Materials (Basel) ; 17(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793455

RESUMO

The effects of rare earth Ce on the microstructure and properties of cast pure copper were investigated through thermodynamic calculations, XRD analysis, mechanical testing, metallographic microscopy, and scanning electron microscopy (SEM). The experimental results demonstrate that the reaction between rare earth Ce and oxygen as well as sulfur in copper exhibits a significantly negative Gibbs free energy value, indicating a strong thermodynamic driving force for deoxidation and desulfurization reactions. Ce is capable of removing trace amounts of O and S from copper. Moreover, the maximum solid solubility of Ce in Cu falls within the range of 0.009% to 0.01%. Furthermore, Ce can refine columnar grains while enlarging equiaxed grains in as-cast copper. Upon the addition of rare earth Ce, the tensile strength increased by 8.45%, elongation increased by 12.1%, and microhardness rose from 73.5 HV to 81.2 HV-an increase of 10.5%. Overall, rare earth Ce has been found to enhance both the microstructure and mechanical properties of cast pure copper.

11.
Cureus ; 16(4): e59081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38800295

RESUMO

This paper examines the impact of delayed diagnosis and treatment on the prognosis of patients with leiomyosarcomas (LMS). We present a case study highlighting the consequences of neglected LMS, focusing on vascular involvement and metastatic potential. Our findings underscore the importance of early detection and intervention in improving patient outcomes. Additionally, we discuss the challenges associated with diagnosing rare skin LMS and the implications of limited access to medical screening. Through a comprehensive analysis of the literature, we elucidate the critical role of routine surveillance in detecting these malignancies at an earlier stage, thus facilitating timely intervention and potentially curative treatment. This study underscores the urgency of raising awareness among both healthcare providers and the general population about the significance of early detection and prompt management in mitigating the adverse outcomes associated with neglected LMS.

12.
Cancers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38672535

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and the sixth most diagnosed malignancy worldwide. Serum alpha-fetoprotein (AFP) is the traditional, ubiquitous biomarker for HCC. However, there has been an increasing call for the use of multiple biomarkers to optimize care for these patients. AFP, AFP-L3, and prothrombin induced by vitamin K absence II (DCP) have described clinical utility for HCC, but unfortunately, they also have well established and significant limitations. Circulating tumor DNA (ctDNA), genomic glycosylation, and even totally non-invasive salivary metabolomics and/or micro-RNAS demonstrate great promise for early detection and long-term surveillance, but still require large-scale prospective validation to definitively validate their clinical validity. This review aims to provide an update on clinically available and emerging biomarkers for HCC, focusing on their respective clinical strengths and weaknesses.

13.
Ann Surg ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557793

RESUMO

OBJECTIVE: Assess cost and complication outcomes after liver transplantation (LT) using normothermic machine perfusion (NMP). SUMMARY BACKGROUND DATA: End-ischemic NMP is often used to aid logistics, yet its' impact on outcomes after LT remains unclear, as does its' true impact on costs associated with transplantation. METHODS: Deceased donor liver recipients at two centers (1/1/2019-6/30/2023) were included. Retransplants, splits and combined grafts were excluded. End-ischemic NMP (OrganOx-Metra®) was implemented 10/2022 for extended-criteria DBDs, all DCDs and logistics. NMP-cases were matched 1:2 with cold storage controls (SCS) using the Balance-of-Risk (DBD-grafts) and UK-DCD Score (DCD-grafts). RESULTS: Overall, 803 transplantations were included, 174 (21.7%) receiving NMP. Matching was achieved between 118 NMP-DBDs with 236 SCS; and 37 NMP-DCD with 74 corresponding SCS. For both graft types, median inpatient comprehensive complications index (CCI) values were comparable between groups. DCD-NMP grafts experienced reduced cumulative 90-day CCI (27.6 vs. 41.9, P=0.028). NMP also reduced the need for early relaparotomy and renal-replacement-therapy, with subsequently less-frequent major complications (Clavien-Dindo >IVa). This effect was more pronounced in DCD-transplants. NMP had no protective effect on early biliary complications. Organ acquisition/preservation costs were higher with NMP, yet NMP-treated grafts had lower 90-day pre-transplant costs in context of shorter waiting-list times. Overall costs were comparable for both cohorts. CONCLUSIONS: This is the first risk-adjusted outcome and cost analysis comparing NMP and SCS. In addition to logistical benefits, NMP was associated with a reduction in relaparotomy and bleeding in DBD-grafts, and overall complications and post-LT renal-replacement for DCDs. While organ acquisition/preservation was more costly with NMP, overall 90-day-healthcare costs-per-transplantation were comparable.

14.
Front Cell Infect Microbiol ; 14: 1347710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500506

RESUMO

Background: Influenza A virus have a distinctive ability to exacerbate SARS-CoV-2 infection proven by in vitro studies. Furthermore, clinical evidence suggests that co-infection with COVID-19 and influenza not only increases mortality but also prolongs the hospitalization of patients. COVID-19 is in a small-scale recurrent epidemic, increasing the likelihood of co-epidemic with seasonal influenza. The impact of co-infection with influenza virus and SARS-CoV-2 on the population remains unstudied. Method: Here, we developed an age-specific compartmental model to simulate the co-circulation of COVID-19 and influenza and estimate the number of co-infected patients under different scenarios of prevalent virus type and vaccine coverage. To decrease the risk of the population developing severity, we investigated the minimum coverage required for the COVID-19 vaccine in conjunction with the influenza vaccine, particularly during co-epidemic seasons. Result: Compared to the single epidemic, the transmission of the SARS-CoV-2 exhibits a lower trend and a delayed peak when co-epidemic with influenza. Number of co-infection cases is higher when SARS-CoV-2 co-epidemic with Influenza A virus than that with Influenza B virus. The number of co-infected cases increases as SARS-CoV-2 becomes more transmissible. As the proportion of individuals vaccinated with the COVID-19 vaccine and influenza vaccines increases, the peak number of co-infected severe illnesses and the number of severe illness cases decreases and the peak time is delayed, especially for those >60 years old. Conclusion: To minimize the number of severe illnesses arising from co-infection of influenza and COVID-19, in conjunction vaccinations in the population are important, especially priority for the elderly.


Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Idoso , Humanos , Pessoa de Meia-Idade , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Eficácia de Vacinas , Coinfecção/epidemiologia , SARS-CoV-2 , Vacinação
15.
Cancers (Basel) ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473290

RESUMO

INTRODUCTION: Circulating tumor DNA (ctDNA) is emerging as a promising, non-invasive diagnostic and surveillance biomarker in solid organ malignancy. However, its utility before and after liver transplant (LT) for patients with primary and secondary liver cancers is still underexplored. METHODS: Patients undergoing LT for hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and colorectal liver metastases (CRLM) with ctDNA testing were included. CtDNA testing was conducted pre-transplant, post-transplant, or both (sequential) from 11/2019 to 09/2023 using Guardant360, Guardant Reveal, and Guardant360 CDx. RESULTS: 21 patients with HCC (n = 9, 43%), CRLM (n = 8, 38%), CCA (n = 3, 14%), and mixed HCC/CCA (n = 1, 5%) were included in the study. The median follow-up time was 15 months (range: 1-124). The median time from pre-operative testing to surgery was 3 months (IQR: 1-4; range: 0-5), and from surgery to post-operative testing, it was 9 months (IQR: 2-22; range: 0.4-112). A total of 13 (62%) patients had pre-transplant testing, with 8 (62%) having ctDNA detected (ctDNA+) and 5 (32%) not having ctDNA detected (ctDNA-). A total of 18 (86%) patients had post-transplant testing, 11 (61%) of whom were ctDNA+ and 7 (33%) of whom were ctDNA-. The absolute recurrence rates were 50% (n = 5) in those who were ctDNA+ vs. 25% (n = 1) in those who were ctDNA- in the post-transplant setting, though this difference was not statistically significant (p = 0.367). Six (29%) patients (HCC = 3, CCA = 1, CRLM = 2) experienced recurrence with a median recurrence-free survival of 14 (IQR: 6-40) months. Four of these patients had positive post-transplant ctDNA collected following diagnosis of recurrence, while one patient had positive post-transplant ctDNA collected preceding recurrence. A total of 10 (48%) patients had sequential ctDNA testing, of whom n = 5 (50%) achieved ctDNA clearance (+/-). The remainder were ctDNA+/+ (n = 3, 30%), ctDNA-/- (n = 1, 10%), and ctDNA-/+ (n = 1, 11%). Three (30%) patients showed the acquisition of new genomic alterations following transplant, all without recurrence. Overall, the median tumor mutation burden (TMB) decreased from 1.23 mut/Mb pre-transplant to 0.00 mut/Mb post-transplant. CONCLUSIONS: Patients with ctDNA positivity experienced recurrence at a higher rate than the ctDNA- patients, indicating the potential role of ctDNA in predicting recurrence after curative-intent transplant. Based on sequential testing, LT has the potential to clear ctDNA, demonstrating the capability of LT in the treatment of systemic disease. Transplant providers should be aware of the potential of donor-derived cell-free DNA and improved approaches are necessary to address such concerns.

16.
Biomolecules ; 14(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397423

RESUMO

Systemic chronic inflammation is recognized as a significant contributor to the development of obesity-related insulin resistance. Previous studies have revealed the physiological benefits of resistant dextrin (RD), including obesity reduction, lower fasting glucose levels, and anti-inflammation. The present study investigated the effects of RD intervention on insulin resistance (IR) in Kunming mice, expounding the mechanisms through the gut microbiome and transcriptome of white adipose. In this eight-week study, we investigated changes in tissue weight, glucose-lipid metabolism levels, serum inflammation levels, and lesions of epididymal white adipose tissue (eWAT) evaluated via Hematoxylin and Eosin (H&E) staining. Moreover, we analyzed the gut microbiota composition and transcriptome of eWAT to assess the potential protective effects of RD intervention. Compared with a high-fat, high-sugar diet (HFHSD) group, the RD intervention significantly enhanced glucose homeostasis (e.g., AUC-OGTT, HOMA-IR, p < 0.001), and reduced lipid metabolism (e.g., TG, LDL-C, p < 0.001) and serum inflammation levels (e.g., IL-1ß, IL-6, p < 0.001). The RD intervention also led to changes in the gut microbiota composition, with an increase in the abundance of probiotics (e.g., Parabacteroides, Faecalibaculum, and Muribaculum, p < 0.05) and a decrease in harmful bacteria (Colidextribacter, p < 0.05). Moreover, the RD intervention had a noticeable effect on the gene transcription profile of eWAT, and KEGG enrichment analysis revealed that differential genes were enriched in PI3K/AKT, AMPK, in glucose-lipid metabolism, and in the regulation of lipolysis in adipocytes signaling pathways. The findings demonstrated that RD not only ameliorated IR, but also remodeled the gut microbiota and modified the transcriptome profile of eWAT.


Assuntos
Animais não Endogâmicos , Microbioma Gastrointestinal , Resistência à Insulina , Camundongos , Animais , Transcriptoma , Dextrinas/farmacologia , Triticum/metabolismo , Amido , Fosfatidilinositol 3-Quinases/metabolismo , Obesidade/metabolismo , Inflamação/genética , Glucose/farmacologia , Camundongos Endogâmicos C57BL
17.
Foods ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338571

RESUMO

High Fischer ratio oligopeptides (HFOs) exhibit diverse biological activities, including anti-inflammatory and antioxidant properties. HFOs from gluten origin were prepared through fermentation and enzymatic hydrolysis and then characterized using free amino acid analysis and scanning electron microscopy (SEM). Following intervention, the levels of serum total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic malondialdehyde (MDA) in the rats significantly decreased (p < 0.05). Simultaneously, there was an increasing trend in superoxide dismutase (SOD) levels, and glutathione (GSH) levels were significantly elevated (p < 0.05). The mRNA expression levels of alcohol metabolism-related genes (ADH4, ALDH2, and CYP2E1) exhibited a significant increase (p < 0.05). Histological examination revealed a reduction in liver damage. The findings indicate that high Fischer ratio oligopeptides, prepared through enzymatic and fermentation methods, significantly improve lipid levels, ameliorate lipid metabolism disorders, and mitigate oxidative stress, and exhibit a discernible alleviating effect on alcoholic liver injury in rats.

18.
Glob Chang Biol ; 30(1): e17114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273577

RESUMO

Human activity and climate change affect biodiversity and cause species range shifts, contractions, and expansions. Globally, human activities and climate change have emerged as persistent threats to biodiversity, leading to approximately 68% of the ~522 primate species being threatened with extinction. Here, we used habitat suitability models and integrated data on human population density, gross domestic product (GDP), road construction, the normalized difference vegetation index (NDVI), the location of protected areas (PAs), and climate change to predict potential changes in the distributional range and richness of 26 China's primate species. Our results indicate that both PAs and NDVI have a positive impact on primate distributions. With increasing anthropogenic pressure, species' ranges were restricted to areas of high vegetation cover and in PAs surrounded by buffer zones of 2.7-4.5 km and a core area of PAs at least 0.1-0.5 km from the closest edge of the PA. Areas with a GDP below the Chinese national average of 100,000 yuan were found to be ecologically vulnerable, and this had a negative impact on primate distributions. Changes in temperature and precipitation were also significant contributors to a reduction in the range of primate species. Under the expected influence of climate change over the next 30-50 years, we found that highly suitable habitat for primates will continue to decrease and species will be restricted to smaller and more peripheral parts of their current range. Areas of high primate diversity are expected to lose from 3 to 7 species. We recommend that immediate action be taken, including expanding China's National Park Program, the Ecological Conservation Redline Program, and the Natural Forest Protection Program, along with a stronger national policy promoting alternative/sustainable livelihoods for people in the local communities adjacent to primate ranges, to offset the detrimental effects of anthropogenic activities and climate change on primate survivorship.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Animais , Humanos , Primatas , Biodiversidade , Ecossistema , Atividades Humanas , China
19.
Environ Sci Pollut Res Int ; 31(3): 3560-3571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085479

RESUMO

The objective of this study was to evaluate the worldwide burden of leukemia owing to occupational exposure to formaldehyde (OEF) from 1990 to 2019. Data on leukemia due to OEF were obtained from the Global Burden of Disease Study (GBD) 2019. By region, age, sex, and disease subtype, the numbers and age-standardized rates (ASRs) associated with deaths, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life years (DALYs) were analyzed. Annual average percentage change (AAPC) was used to estimate disease burden trends from 1990 to 2019. To measure the risk of leukemia due to OEF, the population attributable fraction (PAF) was introduced. From 1990 to 2019, the number of deaths, DALYs, YLLs, and YLDs for leukemia caused by OEF increased by 44%, 34%, 33%, and 124%, respectively. Regarding the change in ASRs, the age-standardized YLDs (ASYLDs) rate of leukemia due to OEF, which was 38.03% (AAPC = 1.17 [95% confidence interval [CI] 1.11, 1.23]), indicated an increased trend. But the age-standardized mortality rate (ASMR), age-standardized DALY (ASDALY) rate, and age-standardized YLL (ASYLL) rate showed decline trends, with - 11.90% (AAPC = - 0.41 [95% CI - 0.45, - 0.37]), - 14.19% (AAPC = - 0.5 [95% CI - 0.55, - 0.45]), and - 14.97% (AAPC = - 0.53 [95% CI - 0.58, - 0.48]), respectively. In terms of PAFs, there were increasing trends in PAFs of age-standardized deaths, ASDALYs, ASYLLs, and ASYLDs for leukemia caused by OEF, with 20.15% (95% uncertainty interval [UI] 11.76%, 30.25%), 36.28% (95% UI 21.46%, 53.42%), 51.91% (95% UI 35.05%, 72.07%), and 36.34% (95% UI 21.58%, 53.63%), respectively. Across the socio-demographic index (SDI) regions, the leukemia burden caused by OEF was concentrated in middle and high-middle SDI regions. Besides, OEF poses a more serious risk for acute leukemia among the leukemia subtype. Globally, leukemia caused by OEF remains a public health burden. Policies must be developed to avoid the burden of leukemia caused by OEF.


Assuntos
Leucemia , Exposição Ocupacional , Humanos , Expectativa de Vida , Anos de Vida Ajustados por Qualidade de Vida , Carga Global da Doença , Leucemia/induzido quimicamente , Leucemia/epidemiologia , Saúde Global
20.
Genesis ; 62(1): e23582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38069547

RESUMO

Tfap2b, a pivotal transcription factor, plays critical roles within neural crest cells and their derived lineage. To unravel the intricate lineage dynamics and contribution of these Tfap2b+ cells during craniofacial development, we established a Tfap2b-CreERT2 knock-in transgenic mouse line using the CRISPR-Cas9-mediated homologous direct repair. By breeding with tdTomato reporter mice and initiating Cre activity through tamoxifen induction at distinct developmental time points, we show the Tfap2b lineage within the key neural crest-derived domains, such as the facial mesenchyme, midbrain, cerebellum, spinal cord, and limbs. Notably, the migratory neurons stemming from the dorsal root ganglia are visible subsequent to Cre activity initiated at E8.5. Intriguingly, Tfap2b+ cells, serving as the progenitors for limb development, show activity predominantly commencing at E10.5. Across the mouse craniofacial landscape, Tfap2b exhibits a widespread presence throughout the facial organs. Here we validate its role as a marker of progenitors in tooth development and have confirmed that this process initiates from E12.5. Our study not only validates the Tfap2b-CreERT2 transgenic line, but also provides a powerful tool for lineage tracing and genetic targeting of Tfap2b-expressing cells and their progenitor in a temporally and spatially regulated manner during the intricate process of development and organogenesis.


Assuntos
Sistemas CRISPR-Cas , Tamoxifeno , Camundongos , Animais , Tamoxifeno/farmacologia , Camundongos Transgênicos , Proteína Vermelha Fluorescente , Integrases/genética , Integrases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA