RESUMO
Bovine viral diarrhea virus (BVDV), bovine epidemic fever virus (BEFV), and bovine respiratory syncytial virus (BRSV) cause respiratory symptoms in cattle. The absence of rapid, precise, and easily accessible diagnostic methods poses difficulties for herders and veterinary epidemiologists during outbreaks of major infectious animal diseases. Considering the mixed infection of viruses, a multiple-detection method, reverse transcription recombinase polymerase amplification (mRT-RPA) combined with a lateral flow biosensor (LFB), was established to simultaneously detect the three pathogens. This technique is based on the specific binding of three differently labeled RT-RPA products (DNA sequences) to antibodies on the three test lines of the LFB, achieving multiplex detection through the presence or absence of coloration on the LFB test lines. The fluorescence values of the LFB test lines are recorded by a test strip reader. The mRT-RPA-LFB assay completes detection at a constant temperature of 41 °C within 33 min. The limits of detection (LODs) for BVDV, BEFV and BRSV were 2.62 × 101, 2.42 × 101 and 2.56 × 101 copies/µL, respectively. No cross-reactivity was observed with the other six bovine viruses. The developed method showed satisfactory intra- and inter-assay precision, and the average coefficients of variation were ranged from 2.92 % to 3.99 %. The diagnostic sensitivity and specificity were 98.11 % and 100 %, respectively, which were highly consistent with the RT-qPCR assay, and the kappa value was 0.988 (95 % confidence interval, CI). In general, the mRT-RPA-LFB assay has the potential to become a powerful tool for rapid screening of cattle diseases because of its advantages such as fast detection speed, convenient operation, strong specificity, and high sensitivity.
Assuntos
Técnicas Biossensoriais , Recombinases , Animais , Bovinos , Técnicas Biossensoriais/métodos , Recombinases/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Transcrição Reversa , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/isolamento & purificação , Limite de Detecção , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/virologiaRESUMO
Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly sensitive method for nucleic acid amplification, thus becoming a focal point of research in the field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-stranded DNA synthesis mechanism, rapid amplification efficiency, and capability to operate at room temperature, among other advantages. In addition, strategies and case studies of RPA in combination with other technologies are detailed to explore the advantages and potential of these integrated approaches for virus detection. Finally, the development prospect of RPA technology is prospected.
Assuntos
Técnicas de Amplificação de Ácido Nucleico , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo , Recombinases/genética , Humanos , Vírus/genética , Vírus/isolamento & purificação , DNA Viral/genéticaRESUMO
Numerous viruses, such as the bovine rotavirus (BRV), the bovine parvovirus (BPV), and the bovine viral diarrhea virus (BVDV), can cause bovine viral diarrhea syndrome. The global livestock industry has been subjected to significant consequences due to this condition. This results in considerable losses and hinders the production of crucial resources such as meat and milk, which are indispensable for sustaining the world's population. It is crucial to develop a quick and precise way of simultaneously detecting BVDV, BRV, and BPV, as they often occur together in mixed infections. A triplex loop-mediated isothermal amplification-lateral flow dipstick (LAMP-LFD) assay that can concurrently detect all three viruses was introduced in this study. The amplification process involved 30 minutes of incubation at 65 °C. The limits of detection (LODs) for BVDV, BRV, and BPV were 2.62 × 101 copies per µL, 2.43 × 101 copies per µL, and 2.50 × 101 copies per µL, respectively. The triplex LAMP-LFD assay was further evaluated in 156 anal swab samples, and the results were in agreement with the results of fluorescence quantitative PCR (qPCR) in more than 99% of the cattle. This assay is expected for the quick identification of triplex viruses in the field because it has high sensitivity and specificity and doesn't depend on laboratory equipment or conditions.
Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Técnicas de Amplificação de Ácido Nucleico , Animais , Bovinos , Técnicas de Amplificação de Ácido Nucleico/métodos , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/isolamento & purificação , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Imunoensaio/métodos , Limite de Detecção , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodosRESUMO
Olaquindox (OLA) and quinocetone (QCT) have been prohibited in aquatic products due to their significant toxicity and side effects. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) were developed for the simultaneous quantitative detection of OLA, QCT, and 3-methyl-quinoxaline-2-carboxylic acid (MQCA) in fish feed and tissue. The EuNP-LFSBs enabled sensitive detection for OLA, QCT, and MQCA with a limit of detection of 0.067, 0.017, and 0.099 ng/mL (R2 ≥ 0.9776) within 10 min. The average recovery of the EuNP-LFSBs was 95.13%, and relative standard deviations were below 9.38%. The method was verified by high-performance liquid chromatography (HPLC), and the test results were consistent. Therefore, the proposed LFSBs serve as a powerful tool to monitor quinoxalines in fish feeds and their residues in fish tissues.
Assuntos
Ração Animal , Antibacterianos , Técnicas Biossensoriais , Európio , Peixes , Quinoxalinas , Quinoxalinas/análise , Animais , Antibacterianos/análise , Ração Animal/análise , Nanopartículas , Cromatografia Líquida de Alta Pressão , Nanopartículas MetálicasRESUMO
The H5N1 avian influenza virus seriously affects the health of poultry and humans. Once infected, the mortality rate is very high. Therefore, accurate and timely detection of the H5N1 avian influenza virus is beneficial for controlling its spread. This article establishes a dual gene detection method based on dual RPA for simultaneously detecting the HA and M2 genes of H5N1 avian influenza virus, for the detection of H5N1 avian influenza virus. Design specific primers for the conserved regions of the HA and M2 genes. The sensitivity of the dual RT-RPA detection method for HA and M2 genes is 1 × 10-7 ng/µL. The optimal primer ratio is 1:1, the optimal reaction temperature is 40 °C, and the optimal reaction time is 20 min. Dual RT-RPA was used to detect 72 samples, and compared with RT-qPCR detection, the Kappa value was 1 (p value < 0.05), and the clinical sample detection sensitivity and specificity were both 100%. The dual RT-RPA method is used for the first time to simultaneously detect two genes of the H5N1 avian influenza virus. As an accurate and convenient diagnostic tool, it can be used to diagnose the H5N1 avian influenza virus.
Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Virus da Influenza A Subtipo H5N1/genética , Animais , Influenza Aviária/virologia , Influenza Aviária/diagnóstico , Humanos , Sensibilidade e Especificidade , Influenza Humana/virologia , Influenza Humana/diagnóstico , Proteínas da Matriz Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Aves/virologia , Proteínas ViroporinasRESUMO
Small molecules are significant risk factors for causing food safety issues, posing serious threats to human health. Sensitive screening for hazards is beneficial for enhancing public security. However, traditional detection methods are unable to meet the requirements for the field screening of small molecules. Therefore, it is necessary to develop applicable methods with high levels of sensitivity and specificity to identify the small molecules. Aptamers are short-chain nucleic acids that can specifically bind to small molecules. By utilizing aptamers to enhance the performance of recognition technology, it is possible to achieve high selectivity and sensitivity levels when detecting small molecules. There have been several varieties of aptamer target recognition techniques developed to improve the ability to detect small molecules in recent years. This review focuses on the principles of detection platforms, classifies the conjugating methods between small molecules and aptamers, summarizes advancements in aptamer-based conjugate recognition techniques for the detection of small molecules in food, and seeks to provide emerging powerful tools in the field of point-of-care diagnostics.
RESUMO
Porcine circovirus (PCV) has become a major pathogen, causing major economic losses in the global pig industry, and PCV type 2 (PCV2) and 3 (PCV3) are distributed worldwide. We designed specific primer and probe sequences targeting PCV2 Cap and PCV3 Rap and developed a multiplex crystal digital PCR (cdPCR) method after optimizing the primer concentration, probe concentration, and annealing temperature. The multiplex cdPCR assay permits precise and differential detection of PCV2 and PCV3, with a limit of detection of 1.39 × 101 and 1.27 × 101 copies/reaction, respectively, and no cross-reaction with other porcine viruses was observed. The intra-assay and interassay coefficients of variation (CVs) were less than 8.75%, indicating good repeatability and reproducibility. To evaluate the practical value of this assay, 40 tissue samples and 70 feed samples were tested for both PCV2 and PCV3 by cdPCR and quantitative PCR (qPCR). Using multiplex cdPCR, the rates of PCV2 infection, PCV3 infection, and coinfection were 28.45%, 1.72%, and 12.93%, respectively, and using multiplex qPCR, they were 25.00%, 0.86%, and 4.31%, respectively This highly specific and sensitive multiplex cdPCR thus allows accurate simultaneous detection of PCV2 and PCV3, and it is particularly well suited for applications that require the detection of small amounts of input nucleic acid or samples with intensive processing and complex matrices.
Assuntos
Infecções por Circoviridae , Circovirus , Reação em Cadeia da Polimerase Multiplex , Doenças dos Suínos , Circovirus/genética , Circovirus/isolamento & purificação , Circovirus/classificação , Suínos , Animais , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Infecções por Circoviridae/diagnóstico , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Primers do DNA/genética , DNA Viral/genéticaRESUMO
Adding an appropriate amount of copper to feed can promote the growth and development of livestock; however, a large amount of heavy metal copper can accumulate in livestock through the enrichment effect, which poses a serious threat to human health. Traditional Cu2+ detection relies heavily on complex and expensive instruments, such as inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS); thus, convenient and simple rapid detection technologies are urgently needed. In this paper, synthesized copper antigens were used to immunize mice and highly specific anticopper monoclonal antibodies were obtained, which were verified to exhibit high affinity and specificity. Based on the above antibodies, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established for the rapid detection of copper content in pork. The standard inhibition curve of the method was obtained by antigen-antibody working concentration screening, in which the half inhibitory concentration (IC50) was 11.888 ng/mL, the limit of detection (LOD) was 0.841 ng/mL and the correlation coefficient R2 of the curve was 0.998. In the additive recovery experiment, the recovery rate ranged from 90% to 110%, and the coefficient of variation (CV) was less than 10%, indicating that the method achieved high accuracy and precision. Finally, the results of ic-ELISA combined with Bland-Altman analysis showed a high correlation with ICP-MS, and the correlation coefficient (R2) reached 0.990 when the copper concentration was less than 200 ng/mL. Thus, the ic-ELISA method exhibits high reliability.
Assuntos
Cobre , Ensaio de Imunoadsorção Enzimática , Produtos da Carne , Ensaio de Imunoadsorção Enzimática/métodos , Animais , Produtos da Carne/análise , Camundongos , Contaminação de Alimentos/análise , Humanos , SuínosRESUMO
The pollution from waste plastic express packages (WPEPs), especially microplastic (MP) fragments, caused by the blowout development of the express delivery industry has attracted widespread attention. On account of the variety of additives, strong complexity, and high diversity of plastic express packages (PEPs), the multi-class classification of WPEPs is a typical large-class-number classification (LCNC). The traceability and identification of microplastic fragments from WPEPs is very challenging. An effective chemometric method for large-class-number classification would be very beneficial for the comprehensive treatment of WPEP pollution through the recycling and reuse of waste plastic express packages, including microplastic fragments and plastic debris. Rather than using the traditional one-against-one (OAO) and one-against-all (OAA) dichotomies, an exhaustive and parallel half-against-half (EPHAH) decomposition, which overcomes the defects of the OAO's classifier learning limitations and the OAA's data proportion imbalance, is proposed for feature selection. EPHAH analysis, combined with partial least squares discriminant analysis (PLS-DA) for large-class-number classification, was performed on 750 microplastic fragments of polyethylene WPEPs from 10 major courier companies using near-infrared (NIR) spectroscopy. After the removal of abnormal samples through robust principal component analysis (RPCA), the root mean square error of cross-validation (RMSECV) value for the model was reduced to 0.01, which was 21.5% lower than that including the abnormal samples. The best models of PLS-DA were obtained using SNV combined with SG-17 smoothing and 2D (SNV+SG-17+2D); the latent variables (LVs), the error rates of Monte Carlo cross-validation (ERMCCVs), and the final classification accuracies were 6.35, 0.155, and 88.67% for OAO-PLSDA; 5.37, 0.103, and 87.33% for OAA-PLSDA; and 3.12, 0.054, and 96.00% for EPHAH-PLSDA. The results showed that the EPHAH strategy can completely learn the complex LCNC decision boundaries for 10 classes, effectively break the tie problem, and greatly improve the voting resolution, thereby demonstrating significant superiority to both the OAO and OAA strategies in terms of classification accuracy. Meanwhile, PLS-DA further maximized the covariance and data interpretation abilities between the potential variables and categories of microplastic debris, thereby establishing an ideal performance identification model with a recognition rate of 96.00%.
RESUMO
Nitrofuran (NF) antibiotics have been banned worldwide in aquaculture due to their potential carcinogenicity and mutagenicity. Because of the short half-life of NF antibiotics, an easy and sensitive multiple lateral flow immunoassay (mLFIA) based on europium nanoparticles (EuNPs) has been successfully established to simultaneously and quantitatively detect 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), 3-amino-2-oxazolidinone (AOZ) and sodium nifurstylenate (NFS) in aquatic products. The EuNP-mLFIA assay was accomplished within 10 min. The limits of detection (LODs) for AOZ, AMOZ and NFS were 0.013, 0.019 and 0.023 ng/mL, respectively. The average recoveries of AOZ, AMOZ and NFS were 98.0-104.4%, 96.0-102.6% and 98.0-102.8%, respectively. It showed satisfactory consistency, and the feasibility was validated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Briefly, this method will become a powerful tool for monitoring multiple NF antibiotics and provide promising applications in the field of food safety and environmental testing.
Assuntos
Nanopartículas Metálicas , Nitrofuranos , Antibacterianos/análise , Európio , Espectrometria de Massas em Tandem/métodos , Nitrofuranos/análise , ImunoensaioRESUMO
Avian influenza is caused by avian influenza virus infection; the H5N1 avian influenza virus is a highly pathogenic subtype, affecting poultry and human health. Since the discovery of the highly pathogenic subtype of the H5N1 avian influenza virus, it has caused enormous losses to the poultry farming industry. It was recently found that the H5N1 avian influenza virus tends to spread among mammals. Therefore, early rapid detection methods are highly significant for effectively preventing the spread of H5N1. This paper discusses the detection technologies used in the detection of the H5N1 avian influenza virus, including serological detection technology, immunological detection technology, molecular biology detection technology, genetic detection technology, and biosensors. Comparisons of these detection technologies were analyzed, aiming to provide some recommendations for the detection of the H5N1 avian influenza virus.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Influenza Aviária/diagnóstico , Virus da Influenza A Subtipo H5N1/genética , Aves Domésticas , Agricultura , MamíferosRESUMO
The recent pandemic of SARS-CoV-2 has underscored the critical need for rapid and precise viral detection technologies. Point-of-care (POC) technologies, which offer immediate and accurate testing at or near the site of patient care, have become a cornerstone of modern medicine. Prokaryotic Argonaute proteins (pAgo), proficient in recognizing target RNA or DNA with complementary sequences, have emerged as potential game-changers. pAgo present several advantages over the currently popular CRISPR/Cas systems-based POC diagnostics, including the absence of a PAM sequence requirement, the use of shorter nucleic acid molecules as guides, and a smaller protein size. This review provides a comprehensive overview of pAgo protein detection platforms and critically assesses their potential in the field of viral POC diagnostics. The objective is to catalyze further research and innovation in pAgo nucleic acid detection and diagnostics, ultimately facilitating the creation of enhanced diagnostic tools for clinic viral infections in POC settings.
Assuntos
Ácidos Nucleicos , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Células Procarióticas/metabolismo , Testes Imediatos , Sistemas CRISPR-CasRESUMO
The five recognized zoonotic foodborne pathogens, namely, Listeria monocytogenes, Staphylococcus aureus, Streptococcus suis, Salmonella enterica and Escherichia coli O157:H7, pose a major threat to global health and social-economic development. These pathogenic bacteria can cause human and animal diseases through foodborne transmission and environmental contamination. Rapid and sensitive detection for pathogens is particularly important for the effective prevention of zoonotic infections. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) combined with recombinase polymerase amplification (RPA) were developed for the simultaneous quantitative detection of five foodborne pathogenic bacteria. Multiple T lines were designed in a single test strip for increasing the detection throughput. After optimizing the key parameters, the single-tube amplified reaction was completed within 15 min at 37 °C. The fluorescent strip reader recorded the intensity signals from the lateral flow strip and converted the data into a T/C value for quantification measurement. The sensitivity of the quintuple RPA-EuNP-LFSBs reached a level of 101 CFU/mL. It also exhibited good specificity and there was no cross-reaction with 20 non-target pathogens. In artificial contamination experiments, the recovery rate of the quintuple RPA-EuNP-LFSBs was 90.6-101.6%, and the results were consistent with those of the culture method. In summary, the ultrasensitive bacterial LFSBs described in this study have the potential for widespread application in resource-poor areas. The study also provides insights in respect to multiple detection in the field.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Humanos , Recombinases , Európio , Sensibilidade e Especificidade , Microbiologia de Alimentos , Técnicas de Amplificação de Ácido Nucleico/métodosRESUMO
Porcine epidemic diarrhea virus (PEDV), porcine bocavirus (PBoV), and porcine rotavirus (PoRV) are associated with porcine viral diarrhea. In this study, triplex loop-mediated isothermal amplification (LAMP) combined with a lateral flow dipstick (LFD) was established for the simultaneous detection of PEDV, PoRV, and PBoV. The PEDV-gp6, PoRV-vp6, and PBoV-vp1 genes were selected to design LAMP primers. The amplification could be carried out at 64 °C using a miniature metal bath within 30 min. The triplex LAMP-LFD assay exhibited no cross-reactions with other porcine pathogens. The limits of detection (LODs) of PEDV, PoRV, and PBoV were 2.40 × 101 copies/µL, 2.89 × 101 copies/µL, and 2.52 × 101 copies/µL, respectively. The consistency between rt-qPCR and the triplex LAMP-LFD was over 99% in field samples testing. In general, the triplex LAMP-LFD assay was suitable for the rapid and simultaneous detection of the three viruses in the field.
RESUMO
Drug abuse is becoming increasingly dangerous nowadays. Morphine (MOP), methamphetamine (MET) and ketamine (KET) are the most commonly abused drugs. The abuse of these drugs without supervision can cause serious harm to the human body and also endanger public safety. Developing a rapid and accurate method to screen drug suspects and thus control these drugs is essential to public safety. This paper presents a method for the simultaneous quantitative detection of these three drugs in hair by a europium nanoparticles-based fluorescence immunochromatographic assay (EuNPs-FIA). In our study, the test area of the nitrocellulose membrane was composed of three equally spaced detection lines and a quality control line. The test strip realized the quantitative analysis of the samples by detecting the fluorescence brightness of the europium nanoparticles captured on the test line within 15 min. For the triple test strip, the limits of detection of MOP, KET and MET were 0.219, 0.079 and 0.329 ng/mL, respectively. At the same time, it also showed strong specificity. The strip was stable and could be stored at room temperature for up to one year, and the average recovery rate was 85.98-115.92%. In addition, the EuNPs-FIA was validated by high-performance liquid chromatography (HPLC) analysis, and a satisfactory consistency was obtained. Compared to the current immunochromatographic methods used for detecting abused drugs in hair, this method not only increased the number of detection targets, but also ensured sensitivity, improving detection efficiency to a certain extent. The approach can also be used as an alternative to chromatography. It provides a rapid and accurate screening method for the detection of abused drugs in hair and has great application prospects in regard to public safety.
RESUMO
This paper presents a method for the protected geographical indication discrimination of Ophiopogon japonicus from Zhejiang and elsewhere using near-infrared (NIR) spectroscopy combined with chemometrics. A total of 3657 Ophiopogon japonicus samples from five major production areas in China were analyzed by NIR spectroscopy, and divided into 2127 from Zhejiang and 1530 from other areas ('non-Zhejiang'). Principal component analysis (PCA) was selected to screen outliers and eliminate them. Monte Carlo cross validation (MCCV) was introduced to divide the training set and test set according to a ratio of 3:7. The raw spectra were preprocessed by nine single and partial combination methods such as the standard normal variable (SNV) and derivative, and then modeled by partial least squares regression (PLSR), a support vector machine (SVM), and soft independent modeling of class analogies (SIMCA). The effects of different pretreatment and chemometrics methods on the model are discussed. The results showed that the three pattern recognition methods were effective in geographical origin tracing, and selecting the appropriate preprocessing method could improve the traceability accuracy. The accuracy of PLSR after the standard normal variable was better, with R2 reaching 0.9979, while that of the second derivative was the lowest with an R2 of 0.9656. After the SNV pretreatment, the accuracy of the training set and test set of SVM reached the highest values, which were 99.73% and 98.40%, respectively. The accuracy of SIMCA pretreated with SNV and MSC was the highest for the origin traceability of Ophiopogon japonicus, which could reach 100%. The distance between the two classification models of SIMCA-SNV and SIMCA-MSC is greater than 3, indicating that the SIMCA model has good performance.
Assuntos
Ophiopogon , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Quimiometria , Geografia , Análise dos Mínimos Quadrados , Análise de Componente PrincipalRESUMO
BACKGROUND: Viral pleurisy is a viral infected disease with exudative pleural effusions. It is one of the causes for pleural effusions. Because of the difficult etiology diagnosis, clinically pleural effusions tend to be misdiagnosed as tuberculous pleurisy or idiopathic pleural effusion. Here, we report a case of pleural effusion secondary to viral pleurisy which is driven by infection with epstein-barr virus. Viral infection was identified by metagenomic next-generation sequencing (mNGS). CASE SUMMARY: A 40-year-old male with a history of dermatomyositis, rheumatoid arthritis, and secondary interstitial pneumonia was administered with long-term oral prednisone. He presented with fever and chest pain after exposure to cold, accompanied by generalized sore and weakness, night sweat, occasional cough, and few sputums. The computed tomography scan showed bilateral pleural effusions and atelectasis of the partial right lower lobe was revealed. The pleural fluids were found to be yellow and slightly turbid after pleural catheterization. Thoracoscopy showed fibrous adhesion and auto-pleurodesis. Combining the results in pleural fluid analysis and mNGS, the patient was diagnosed as viral pleuritis. After receiving Aciclovir, the symptoms and signs of the patient were relieved. CONCLUSION: Viral infection should be considered in cases of idiopathic pleural effusion unexplained by routine examination. mNGS is helpful for diagnosis.
RESUMO
Vascular endothelium dysfunction plays an important role in oncological and pulmonary diseases. Endothelial barrier dysfunction is the initial step of pulmonary vascular remodeling (PVR) and pulmonary arterial hypertension. Upregulation of a pro-autophagy protein Atg101 in the endothelial cells triggered a cascade of intracellular events that leads to endothelial dysfunction through apoptosis. Herein, we proposed a strategy that used endothelial targeting DNA nanostructures to deliver Atg101 siRNA (siAtg101) as a safe, biocompatible "band-aid" to restore pulmonary arterial endothelial barrier integrity within the intricate milieu of pulmonary cells and the pulmonary vasculature. The siAtg101 and aptamer conjugated DNA nanostructures were found to attenuate hypoxia-induced pulmonary endothelial leakiness with surprisingly high selectivity and efficacy. Further in vivo study revealed that functionalized DNA nanostructures likewise attenuated the vascular remodeling in a monocrotaline-induced PVR mouse model. Mechanistically, functionalized DNA nanostructures suppressed PVR by knocking down Atg101, which in turn, downregulated Beclin-1 and subsequently upregulated VE-cadherin to restore endothelial cells' adherin junctions. This work opened a new window for future nanomaterial design that directly addresses the interfacial endothelial cell layer that often stands between the blood and many diseased sites of nanotherapeutic interest.
Assuntos
Hipertensão Pulmonar , Nanoestruturas , Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Células Endoteliais , Remodelação Vascular , Hipertensão Pulmonar Primária Familiar , DNA/genética , DNA/uso terapêuticoRESUMO
INTRODUCTION: The purpose of this study is to summarize the benefits of the double-deck viscoelastic technique (DDVT), a novel and cost-effective surgical technique that creates a barrier to hinder silicone oil (SO) from connecting and damaging the corneal endothelium in aphakic and SO-dependent eyes. METHODS: Five SO-dependent and aphakic eyes underwent double-deck viscoelastic embedment and penetrating keratoplasty (PKP) in this retrospective case series. At 1, 6, 12, 18, and 24 months after surgery, clinical outcomes including best corrected visual acuity (BCVA), intraocular pressure (IOP), corneal endothelial cell density (ECD), and double-deck viscoelastic layer imaging were evaluated. A Heidelberg Retina Tomograph confocal microscope was used to measure ECD. Ultrasound biomicroscopy (UBM) was used to image the double-deck viscoelastic layer. RESULTS: Postoperatively, the BCVA of the patients ranged from hand motion detection to 20/200, and their IOP was between 7 and 10 mmHg. The two-deck viscoelastic layer remained mostly static. Patients showed varying degrees of ECD reduction, with ECD loss rates in the first 6 months ranging from 6.7 to 75.8 cells/mm2/month and then declining to 2.2-14.3 cells/mm2/month. CONCLUSION: In SO-dependent aphakic eyes, double-deck viscoelastic embedment could effectively inhibit SO-corneal endothelium interaction. This technique could lower the pace of ECD loss and lengthen the time of corneal transparency, giving aphakic and silicone oil-dependent patients the opportunity to accept PKP surgery and get better vision quality.
RESUMO
Safe and effective vaccines for Corona Virus Disease 2019 (COVID-19) can prevent the virus from infecting human populations and treat patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we discuss the inhibitory abilities of primary and booster vaccine-induced antibodies inhibitory ability toward the SARS-CoV-2 wild-type strain, as well as B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529. We confirmed these antibodies had the strongest inhibitory effects on the wild-type strain and cross-inhibition activities against other mutant strains after two inactivated vaccine doses. However, the B.1.351, B.1.617.2 and B.1.1.529 mutants exhibit antibody resistance in the vaccine serum. Antibodies induced by homologous inactivated vaccines (n = 92) presented more effective inhibition against tested SARS-CoV-2 strains (p < 0.0001), especially B.1.351, B.1.617.2, and B.1.1.529 mutant strains, which had strong immune escape characteristics. In addition, a heterologous booster vaccination (n = 50) of a protein subunit vaccine ZifiVax (ZF2001) significantly restored humoral immune responses and even showed an increasing response against wild-type, B.1.351, B.1.617.2, and B.1.1.529 than homologous inactivated vaccines. Our analysis of the humoral immune response elicited by the different vaccine regimens, including inhibiting antibodies, indicated that a booster, whether homologous or heterologous, could be essential for achieving greater efficacy against SARS-CoV-2.