RESUMO
The urgent need to curb the rampant rise in cancer has impelled the rapid development of nanomedicine. Under the above issue, transition metal compounds have received special attention considering their physicochemical and biochemical properties. However, how to take full advantage of the valuable characteristics of nanomaterials based on their spatial structures and chemical components for synergistic tumor therapy is a worthwhile exploration. In this work, a tailored two-dimensional (2D) FeSe2 nanosheet (NS) platform is proposed, which integrates enzyme activity and drug efficacy through the regulation of itsstability. Specifically, metastable FeSe2 NSs can serve as dual nanozymes in an intact state, depleting GSH and increasing ROS to induce oxidative stress in the tumor microenvironment (TME). With the gradual degradation of the FeSe2 in TME, its degraded products can amplify the Fenton reaction and GSH consumption, enhance the expression of inflammatory factors, and achieve effective near-infrared (NIR)-light irradiation-enhanced synergistic photothermal therapy (PTT) and chemodynamic therapy (CDT). Our exploration further confirmed such a strategy that may integrate carrier activity and drug action into a metastable nanoplatform for tumor synergistic therapy. These results prompt the consideration of the rational design of a one-for-all carrier that can exhibit multifunctional properties and nanomedicine efficacy for versatile therapeutic applications in the future.
Assuntos
Antineoplásicos , Nanoestruturas , Animais , Camundongos , Nanoestruturas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Microambiente Tumoral/efeitos dos fármacos , Terapia Fototérmica , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Neoplasias/tratamento farmacológicoRESUMO
Mineral dust can accelerate secondary aerosol formation under humid conditions. However, it is unclear whether it can promote secondary aerosol formation under dry conditions. To investigate this issue, two years of comprehensive observations was conducted at a semi-arid site, near the dust source regions. Three types of episodes were selected: dust, anthropogenic-dominated, and mixed (mixed with dust and anthropogenic aerosols). Compared to anthropogenic-dominated episodes under humid conditions, rapid nitrate formation was still observed in mixed episodes under dry conditions, suggesting that active metallic oxides in dust, such as titanium dioxide, could promote photochemical reactions of nitrogen dioxide. The detailed evolutionary processes are further illustrated by a typical dust-to-mixed episode. After the arrival of the dust, titanium sharply increased ten-fold and rapid nitrate formation was observed, together with a rapid increase in the two most important photochemical pollutants, ozone and peroxyacetyl nitrate. The increased secondary organic carbon further illustrated that the suspended dust particles accelerated the atmospheric oxidative capacity, thereby enhancing secondary aerosol formation and eventually leading to haze pollution. These results differ from those in humid regions and therefore expand the scientific understanding of the impact of dust aerosols on haze pollution under dry conditions.
Assuntos
Poluentes Atmosféricos , Poeira , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Poeira/análise , Monitoramento Ambiental/métodos , Nitratos/análise , Compostos Orgânicos , Material Particulado/análiseRESUMO
The current understanding regarding the potential influence of aerosol chemistry on the optical properties does not satisfy accurate evaluation of aerosol radiative effects and precise determination of aerosol sources. We conducted a comprehensive study of the potential influence of aerosol chemistry on the optical properties in a semi-arid region based on various observations. Organic matter was the main contributor to the scattering coefficients followed by secondary inorganic aerosols in all seasons. We further related aerosol absorption to elemental carbon, organic matter, and mineral dust. Results showed that organic matter and mineral dust contributed to >40% of the aerosol absorption in the ultraviolet wavelengths. Therefore, it is necessary to consider the absorption of organic matter and mineral dust in addition to that of elemental carbon. We further investigated the potential influence of chemical composition, especially of organic matter and mineral dust on the optical parameters. Mineral dust contributed to higher absorption efficiency and lower scattering efficiency in winter. The absorption Ångström exponent (AAE) was mostly sensitive to organic matter and mineral dust in winter and spring, respectively; it was relatively high (i.e., 1.68) in winter and moderate (i.e., 1.42) in spring. Unlike in the other seasons, mineral dust contributed to higher mass absorption efficiency in winter. This work reveals the complexity of the relationship between aerosol chemistry and optical properties, and especially the influence of organic matter and mineral dust on aerosol absorption. The results are highly important regarding both regional air pollution and climate.
Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , Poeira/análise , Estações do Ano , Carbono , Material Particulado/análiseRESUMO
The synergistic response of urban atmospheric aerosols and ozone (O3) to reduction of anthropogenic emissions is complicated and still needs further study. Thus, the changes in physical and chemical properties of urban atmospheric aerosols and O3 during the Coronavirus Disease 2019 (COVID-19) lockdown were investigated at three urban sites and one rural site in Lanzhou with semi-arid climate. Fine particulate matter (PM2.5) decreased at four sites by â¼ 20% while O3 increased by >100% at two urban sites during the COVID-19 lockdown. Both primary emissions and secondary formation of PM2.5 decreased during the lockdown. Significant increase in both sulfur and nitrogen oxidation ratios was found in the afternoon, which accounted for 48.7% of the total sulfate and 40.4% of the total nitrate, respectively. The positive matrix factorization source apportionment revealed increased contribution of secondary formation and decreased contribution of vehicle emissions. Aerosol scattering and absorption decreased by 33.6% and 45.3%, resulting in an increase in visibility by 30% and single scattering albedo (SSA) at 520 nm slightly increased by 0.02. The enhanced O3 production was explained by increased volatile organic compounds to nitrogen oxides ratio, decreased aerosol, as well as increased SSA. The primary emissions of secondary aerosol precursors significantly decreased while Ox (i.e., NO2 and O3) exhibited little change. Consequently, Ox to CO ratio, PM2.5 to elemental carbon (EC) ratio, secondary inorganic aerosols to EC ratio, and secondary organic carbon to EC ratio increased, confirming enhanced secondary aerosol production efficiency during the lockdown. Positive feedback among O3 concentration, secondary aerosol formation, and SSA was revealed to further promote O3 production and secondary aerosol formation. These results provide scientific guidance for collaborative management of O3 and particulate matter pollution for cities with semi-arid climate.
RESUMO
The vertical distribution of atmospheric aerosols plays an essential role in aerosol-radiation and aerosol-cloud interactions. Because of strong light absorption, the radiative effects of black carbon (BC) are highly sensitive to its vertical distribution; the lack of high-resolution observations is the reason for their poor quantification. We used a tethered balloon platform to acquire high-resolution vertical profiles of BC, particle number concentration, and meteorological parameters in the semi-arid region of Northwest China in December 2018. A total of 112 BC profiles were classified into four vertical distribution categories, which were determined by local emissions, regional transport, vertical mixing due to the ABL evolution, and topography. BC profiles with peaks near or above the atmospheric boundary layer (ABL) accounted for 57% of the profiles. Vertical single scattering albedo (SSA) profiles were subsequently calculated using the profiles of BC and particle size distribution. The vertical SSA distribution is generally modulated by BC profiles. The diurnal variations of the BC and SSA profiles were summarized using a boundary-layer normalization method. In the ABL, BC decreased and SSA increased with increasing height at 02:00, 08:00, and 20:00, while both BC and SSA exhibited a uniform distribution at 14:00. The SSA decreased above the ABL at 14:00, which might have had a profound impact on ABL development. These results provide a better understanding of the vertical BC and SSA distributions, which can also be used to reduce uncertainties in estimating the BC radiative effects.