Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 57, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238675

RESUMO

γ -aminobutyric acid (GABA) is closely related to the growth, development and stress resistance of plants. Combined with the previous study of GABA to promote the cotton against abiotic stresses, the characteristics and expression patterns of GABA branch gene family laid the foundation for further explaining its role in cotton stress mechanism. Members of GAD, GAB-T and SSADH (three gene families of GABA branch) were identified from the Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii genome. The GABA branch genes were 10 GAD genes, 4 GABA-T genes and 2 SSADH genes. The promoter sequences of genes mainly contains response-related elements such as light, hormone and environment.Phylogenetic analysis shows that GAD indicating that even in the same species, the homologous sequences in the family. The GABA-T gene of each cotton genus was in sum the family had gene loss in the process of dicotyledon evolution. SSADH families Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii were closely related to the dicot plants.GABA gene is involved in the regulation of salt stress and high temperature in Gossypium hirsutum.GABA attenuated part of the abiotic stress damage by increasing leaf protective enzyme activity and reducing reactive oxygen species production.This lays the foundation for a thorough analysis of the mechanism of GABA in cotton stress resistance.


Assuntos
Gossypium , Família Multigênica , Gossypium/metabolismo , Filogenia , Genes de Plantas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta
2.
Genes (Basel) ; 13(7)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35885942

RESUMO

China, particularly the cotton-growing province of Xinjiang, is experiencing acute agricultural water shortages, stifling the expansion of the cotton sector. Discovering drought resistance genes in cotton and generating high-quality, drought-resistant cotton varieties through molecular breeding procedures are therefore critical to the cotton industry's success. The drought-resistant cotton variety Xinluzhong No. 82 and the drought-sensitive cotton variety Kexin No. 1 were utilised in this study to uncover a batch of drought-resistant candidate genes using whole transcriptome sequencing. The following are the key research findings: A competing endogenous RNA network (ceRNA) was built using complete transcriptional sequencing to screen the core genes in the core pathway, and two drought-related candidate genes were discovered. It was found that γ-aminobutyric acid aminotransferase (GhGABA-T, Gohir.A11G156000) was upregulated at 0 h vs. 12 h and downregulated at 12 h vs. 24 h. L-Aspartate oxidase (GhAO, Gohir.A07G220600) was downregulated at 0 h vs. 12 h and upregulated at 12 h vs. 24 h. GABA-T is analogous to a pyridoxal phosphate-dependent transferase superfamily protein (POP2) in Arabidopsis thaliana and influences plant drought resistance by controlling γ-aminobutyric acid (GABA) concentration. The analogue of GhAO in A. thaliana is involved in the early steps of nicotinamide adenine dinucleotide (NAD) production as well as in plant antioxidant responses. This study revealed that gene expression regulatory networks can be used for rapid screening of reliable drought resistance genes and then utilised to validate gene function.


Assuntos
Arabidopsis , Secas , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequenciamento do Exoma , Ácido gama-Aminobutírico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA