RESUMO
NIK plays a crucial role in the noncanonical NF-κB signaling pathway associated with diverse inflammatory and autoimmune diseases. Our study presents compound 54, a novel NIK inhibitor, designed through a structure-based scaffold-hopping approach from the previously identified B022. Compound 54 demonstrates remarkable selectivity and potency against NIK both in vitro and in vivo, effectively suppressing pro-inflammatory cytokines and nitric oxide production. In mouse models, compound 54 protected against LPS-induced systemic sepsis, reducing AST, ALT, and AKP liver injury markers. Additionally, it also attenuates sepsis-induced lung and kidney damage. Mechanistically, compound 54 blocks the noncanonical NF-κB signaling pathway by targeting NIK, preventing p100 to p52 processing. This work reveals a novel class of NIK inhibitors with significant potential for sepsis therapy.
Assuntos
Proteínas Serina-Treonina Quinases , Sepse , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , NF-kappa B/metabolismo , Quinase Induzida por NF-kappaB , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sepse/induzido quimicamente , Sepse/tratamento farmacológicoRESUMO
Tumor microenvironment (TME) responsive polymeric micelles are promising carriers for drug delivery. In order to meet the needs of various applications, multifarious TME-responsive switches are used to construct smart polymeric micelles, which causes the complexity and corpulence of the polymeric micelle system and increases the difficulty of preparation. In this study, we designed and synthesized an ingenious TME-responsive switch through grafting disulfide bond-modified piperidinepropionic acid (CPA) on copolymer poly(ethylene glycol)-b-poly(aspartate)(PEG-b-PAsp) and built a novel pH/reduction-responsive PEG-b-PAsp-g-CPA polymeric micelle delivery system. The CPA-pendants can reverse the surface charge of the polymeric micelle from negative to positive at pH 6.5 because of the protonation of piperidine groups, thereby enhancing the internalization of cell. Subsequently, more piperidine groups are protonated at pH 5.0 which will increase the hydrophilicity of polymeric micelles and cause the hydrophobic core to swell, thus making the disulfide bonds packed in the core to be more easily broken by GSH. With the synergistic effect of the pH-triggered protonation of piperidine groups and reduction triggered break of disulfide bonds, the polymeric micelles will disintegrate and achieve efficient intracellular drug release. The TME-responsive polymeric micelles exhibited good biological safety, enhanced internalization, and rapid intracellular doxorubicin (DOX) release in vitro. Moreover, the PEG-b-PAsp-g-CPA/DOX polymeric micelles showed excellent antitumor efficacy and low systemic toxicity in lung tumor-bearing BALB/C mice. These results indicated that the novel integrated TME-responsive switch CPA helps the PEG-b-PAsp-g-CPA polymeric micelles to obtain excellent TME-responsiveness and antitumor drug delivery capabilities, while it also makes the preparation of TME-responsive polymeric micelles simpler and more convenient. This work provides a new idea for the architecture of TME-responsive polymeric micelles.
Assuntos
Liberação Controlada de Fármacos , Microambiente Tumoral , Animais , Doxorrubicina , Camundongos , Micelas , PolietilenoglicóisRESUMO
The size-uniformed mesoporous Ag@SiO2 nanospheres' catalysts were prepared in one-pot step via reducing AgNO3 by different types of aldehyde, which could control the size of Ag@SiO2 NPs and exhibit excellent catalytic activity for the hydrogenation of nitrobenzene. The results showed that the Ag core size, monitored by different aldehydes with different reducing abilities, together with the ideal monodisperse core-shell mesoporous structure, was quite important to affect its superior catalytic performances. Moreover, the stability of Ag fixed in the core during reaction for 6 h under 2.0 MPa, 140 °C made this type of Ag@SiO2 catalyst separable and environmentally friendly compared with those conventional homogeneous catalysts and metal NPs catalysts. The best catalyst with smaller Ag cores was prepared by strong reducing agents such as CH2O. The conversion of nitrobenzene can reach 99.9%, the selectivity was 100% and the catalyst maintained its activity after several cycles, and thus, it is a useful novel candidate for the production of aniline.
RESUMO
Dendritic cells (DCs) based cancer immunotherapy is largely dependent on adequate antigen delivery and efficient induction of DCs maturation to produce sufficient antigen presentation and ultimately lead to substantial activation of tumor-specific CD8+ T cells. Carbon nanotubes (CNTs) have attracted great attention in biomedicine because of their unique physicochemical properties. In order to effectively deliver tumor antigens to DCs and trigger a strong anti-tumor immune response, herein, a specific DCs target delivery system was assembled by using multi-walled carbon nanotubes modified with mannose which can specifically bind to the mannose receptor on DCs membrane. Ovalbumin (OVA) as a model antigen, could be adsorbed on the surface of mannose modified multi-walled carbon nanotubes (Man-MWCNTs) with a large drug loading content. This nanotube-antigen complex showed low cytotoxicity to DCs and was efficiently engulfed by DCs to induce DCs maturation and cytokine release inâ vitro, indicating that it could be a potent antigen-adjuvant nanovector of efficient antigen delivery for therapeutic purpose.