Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 139(4): 107653, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37463544

RESUMO

Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.


Assuntos
Homocistinúria , Humanos , Camundongos , Animais , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Metionina/metabolismo , Homocisteína , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Racemetionina , Trato Gastrointestinal/metabolismo
2.
Environ Sci Technol ; 42(6): 2015-20, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18409630

RESUMO

This research investigated the thermodynamic favorability and resulting structures for chemical adsorption of trichloroethylene (TCE) to metallic iron using periodic density functional theory (DFT). Three initial TCE positions having the plane defined by HCC atoms parallel to the iron surface resulted in formation of three different chemisorption complexes between carbon atoms in TCE and the iron surface. The Cl-bridge initial configuration with the HCC plane of TCE perpendicular to the iron surface did not result in C-Fe bond formation. The most energetically favorable complex formed at the C-bridge site where the initial configuration had the C=C bond in TCE at a bridge site between adjacent iron atoms. In the C-bridge complex, one C atom formed two a bonds to different Fe atoms, while the second C atom formed a sigma bond with a second Fe atom. Surface complexation atthe C-bridge site resulted in scission of all three C-Cl bonds and also resulted in a shortening of the C==C bond to a distance intermediate between a double and a triple bond. Initial configurations with the C==C bond adsorbed at top or hollow sites on the iron surface resulted in formation of C-Fe a bonds between a single C and two adjacent Fe atoms, and the scission of only two C==Cl bonds. Bond angles and bond lengths indicated that there were no changes in bond order of the C==C bond for top and hollow adsorption. Chemisorption at the C-bridge site had an activation energy of 49 kJ/mol and an early transition state where all three C-CI bonds were activated. The early transition state and the loss of all three Cl atoms upon chemisorption are consistent with most experimental observations that TCE undergoes complete dechlorination in one interaction with the iron surface. The absence of chemisorption and scission of only two C--Cl bonds at the Cl-bridge site is consistent with experimental observations that trace amounts of chloroacetylene may also be produced from reactions of TCE with iron.


Assuntos
Ferro/química , Modelos Químicos , Tricloroetileno/química , Poluentes Químicos da Água/química , Adsorção
3.
Environ Sci Technol ; 39(13): 4816-22, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16053079

RESUMO

Understanding adsorption of arsenic on ferric hydroxide surfaces is important for predicting the fate of arsenic in the environment and in designing treatment systems for removing arsenic from potable water. This research investigated the binding of arsenite to ferric hydroxide clusters using several density functional theory methods. Comparison of calculated and experimentally measured As-O and As-Fe bond distances indicated that As(III) forms both bidentate and monodentante corner-sharing complexes with Fe(III) octahedra. Edge-sharing As(III) complexes were less energetically favorable and had As-O and As-Fe distances that deviated more from experimentally measured values than corner-sharing complexes. The hydrated bidentate complex was the most energetically favorable in the vacuum phase, while the monodentate complex was most favored in the aqueous phase. Structures optimized using the Harris and Perdew-Wang local functionals were close to both experimental data and structures optimized using the nonlocal Becke-Lee-Yang-Parr (BLYP) functional. Binding energies calculated with the gradient-corrected BLYP functional were only weakly dependent on the method used for geometry optimization. The approach of using low-level structures coupled with higher level single-point energies was found to reduce computational time by 75% with no loss in accuracy of the computed binding energies.


Assuntos
Arsenitos/química , Compostos Férricos/química , Modelos Teóricos , Poluentes da Água , Absorção , Previsões , Água/química
4.
Environ Sci Technol ; 39(2): 612-7, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15707062

RESUMO

Chlorinated solvents in groundwater are known to undergo reductive dechlorination reactions with Fe(ll)-containing minerals and with corroding metals in permeable-barrier treatment systems. This research investigated the effect of the reaction energy on the reaction pathway for C-Cl bond cleavage in carbon tetrachloride (CCl4). Hartree-Fock, density functional theory, and modified complete basis set ab initio methods were used to study adiabatic electron transfer to aqueous-phase CCl4. The potential energies associated with fragmentation of the carbon tetrachloride anion radical (CCl4-) into a trichloromethyl radical (CCl3) and a chloride ion (Cl-) were explored as a function of the carbon-chlorine bond distance during cleavage. The effect of aqueous solvation was investigated using a continuum conductor-like screening model. Solvation significantly lowered the energies of the reaction products, suggesting that dissociative electron transfer was enhanced by solvation. The potential energy curves in an aqueous medium indicate that reductive cleavage undergoes a change from an inner-sphere to an outer-sphere mechanism as the overall energy change for the reaction is increased. The activation energy for the reaction was found to be a linear function of the overall energy change, and the Marcus-Hush model was used to relate experimentally measured activation energies for CCl4 reduction to overall reaction energies. Experimentally measured activation energies for CCl4 reduction by corroding iron correspond to reaction energies that are insufficiently exergonic for promoting the outer-sphere mechanism. This suggests that the different reaction pathways that have been observed for CCl4 reduction by corroding iron arise from different catalytic interactions with the surface, and not from differences in energy of the transferred electrons.


Assuntos
Tetracloreto de Carbono/química , Modelos Teóricos , Solventes/química , Purificação da Água/métodos , Carbono/química , Cloro/química , Corrosão , Ferro/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA