Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 475: 134913, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880048

RESUMO

Photoinitiators (PIs) are chemical additives that generate active substances, such as free radicals to initiate photopolymerization. Traditionally, polymerization has been considered a green technique that seldomly generates contaminants. However, many researches have confirmed toxicity effects of PIs, such as carcinogenicity, cytotoxicity, endocrine disrupting effects. Surprisingly, we found high levels of PIs in indoor dust. Our analysis revealed comparable levels of PIs in dust from printing shops (geometric mean, GM: 1.33 ×103 ng/g) and control environments (GM: 874 ng/g), underscoring the widespread presence of PIs across various settings. Alarmingly, in dust samples from nail salons, PIs were detected at total concentrations ranging from 610 to 1.04 × 107 ng/g (GM: 1.87 ×105 ng/g), significantly exceeding those in the control environments (GM: 1.43 ×103 ng/g). Nail salon workers' occupational exposure to PIs through dust ingestion was estimated at 4.86 ng/kg body weight/day. Additionally, an in vitro simulated digestion test suggested that between 10 % and 42 % of PIs present in ingested dust could become bioaccessible to humans. This is the first study to report on PIs in the specific environments of nail salons and printing shops. This study highlights the urgent need for public awareness regarding the potential health risks posed by PIs to occupational workers, marking an important step towards our understanding of environmental pollution caused by PIs.


Assuntos
Poeira , Exposição Ocupacional , Poeira/análise , Exposição Ocupacional/análise , Humanos , Medição de Risco , Poluição do Ar em Ambientes Fechados/análise , Indústria da Beleza , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade
2.
Anal Chem ; 96(26): 10714-10723, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913030

RESUMO

Excessive intake of estrogen poses significant health risks to the human body; hence, there is a necessity to develop rapid detection methods to monitor its levels of addition. Gold nanoparticles (AuNPs), commonly utilized as colorimetric signal labels, find extensive application in lateral flow immunoassay (LFIA). However, the detection sensitivity of traditional AuNPs-LFIA is typically constrained by low molar extinction coefficients and reliance on a single signal. Herein, in this work, unique spark-type AuCuPt nanoflowers modified with tannic acid (AuCuPt@TA) were precisely designed by reasonable layer-by-layer element composition and green modification. The obtained AuCuPt displays robust broadband absorption spanning the visible to near-infrared spectrum, showcasing a notable molar extinction coefficient of 2.38 × 1012 M-1 cm-1 and a photothermal conversion efficiency of 48.5%. Based on this, selecting estriol (E3) as a model analyte, colorimetric/photothermal dual-signal LFIA (CLFIA and PLFIA) was developed. Limits of detection (LOD) of the CLFIA and PLFIA were achieved at 0.033 ng mL-1 and 0.021 ng mL-1, respectively, which represent a 9.3- and 14.6-fold improvement compared to the visual LOD of AuNPs-LFIA. Moreover, the application feasibility of the immunoassay was further evaluated in the milk and pork with satisfactory recoveries ranging from 86.21% to 117.91%. Thus, this work has enhanced the performance of LFIA for E3 detection and exhibited enormous potential for other sensing platform construction.


Assuntos
Ligas , Estriol , Ouro , Nanopartículas Metálicas , Imunoensaio/métodos , Nanopartículas Metálicas/química , Ouro/química , Estriol/análise , Ligas/química , Animais , Colorimetria , Limite de Detecção , Taninos/química , Taninos/análise
3.
Small Methods ; : e2301804, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859633

RESUMO

In this study, unique BiVO4-Au-Cu2O nanosheets (NSs) are well designed and multiple charge transfer paths are consequently constructed. The X-ray photoelectron spectroscopy measurement during a light off-on-off cycle and redox capability tests of the photo-generated charge carriers confirmed the formation of Z-scheme heterojunction, which can facilitate the charge carrier separation and transfer and maintain the original strong redox potentials of the respective component in the heterojunction. The ultrathin 2D structure of the BiVO4 NSs provided sufficient surface area for the photocatalytic reaction. The local surface plasmon resonance (LSPR) effect of the electron mediator, Au NPs, enhanced the light absorption and promoted the excitation of hot electrons. The multiple charge transfer paths effectively promoted the separation and transfer of the charge carrier. The synergism of the abovementioned properties endowed the BiVO4-Au-Cu2O NSs with satisfactory photocatalytic activity in the degradation of tetracycline (Tc) with a removal rate of ≈80% within 30 min under visible light irradiation. The degradation products during the photocatalysis are confirmed by using ultra-high performance liquid chromatography-mass spectrometry and the plausible degradation pathways of Tc are consequently proposed. This work paves a strategy for developing highly efficient visible-light-driven photocatalysts with multiple charge transfer paths for removing organic contaminants in water.

4.
J Hazard Mater ; 470: 134113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565021

RESUMO

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Assuntos
Compostos de Metilmercúrio , Fotólise , Poluentes Químicos da Água , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/efeitos da radiação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/análise , Luz , Raios Ultravioleta , Nitratos/química , Nitratos/análise , Rios/química
5.
J Hazard Mater ; 470: 134187, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574659

RESUMO

The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.


Assuntos
Ésteres , Ácidos Ftálicos , Plantas , Poluentes Químicos da Água , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Ésteres/toxicidade , Plantas/efeitos dos fármacos , Plantas/metabolismo , Poluentes Químicos da Água/toxicidade
6.
J Hazard Mater ; 469: 133979, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492396

RESUMO

Riverine mercury (Hg) is mainly transported to coastal areas in suspended particulate matter (SPM)-bound form, posing a potential threat to human health. Water discharge and SPM characteristics in rivers vary naturally with seasonality and can also be arbitrarily disrupted by anthropogenic regulation events, but their effects on Hg transport remain unresolved. Aiming to understand the confounding effects of seasonality and anthropogenic river regulation on Hg and SPM transport, this study selected the highly sediment-laden Yellow River as a representative conduit. Significant variations in SPM concentrations (108 - 7097 mg/L) resulted in fluctuations in total mercury (THg, 3.79 - 111 ng/L) in river water corresponding to seasonality and anthropogenic water/sediment regulation. Principal component analysis and structural equation model revealed that SPM was the essential factor controlling THg and particulate Hg (PHg) in river water. While SPM exhibited equilibrium state in the dry season, a net resuspension during the anthropogenic regulation and net deposition in the wet season demonstrated the impact of SPM dynamics on Hg distribution and transport to coastal regions. Combining water discharge, SPM, and Hg concentrations, a modified model was developed to quantify Hg flux (2256 kg), over 98% of which was in particulate phase.


Assuntos
Mercúrio , Poluentes Químicos da Água , Humanos , Rios/química , Material Particulado/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Mercúrio/análise , Água/análise , Poeira/análise , Oceanos e Mares , Sedimentos Geológicos/análise
7.
J Chromatogr A ; 1712: 464472, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37924619

RESUMO

Transformations between dimethylmercury (DMHg) and other mercury (Hg) species have been one of the critical knowledge gaps in the Hg global biogeochemical cycle due to the lack of detailed studies. The preparation and measurement of DMHg are challenging due to the high toxicity and volatility of DMHg. In this work, we invented a new DMHg generator for successfully preparing high-purity DMHg in a highly controllable and safe way. The DMHg could be spontaneously volatilized and diffused from the original preparation solution to the solution to be studied. The parameters for generating DMHg were optimized to be the pH value of 4.0 with a MeCo/Hg2+ molar ratio of 10 at 20 °C. The following measurement method of DMHg in the presence of various species of Hg was also investigated and optimized. Hg0 and DMHg could be separated effectively with the carrier gas flow rate of 15 mL min-1 and the gas chromatography column temperature of 30 °C. The interferences of Hg0, monomethylmercury and other species were excluded by systematic control experiments. A sensitive and reliable approach for quantifying trace DMHg in water was developed. Under the optimal conditions, the limits of detection for Hg0, MMHg and DMHg were 0.03, 0.002 and 0.024 ng L-1, respectively, with the relative standard deviation below 8.2%. The developed method was validated by the determination Hg species of different natural water samples. This work is expected to provide a new and safe strategy for DMHg preparation and a verified method for DMHg measurement.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Espectrometria de Fluorescência , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise , Compostos de Metilmercúrio/análise , Mercúrio/análise , Água
8.
Chem Commun (Camb) ; 59(50): 7704-7716, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37248748

RESUMO

Plasmonic nanomaterials have spurred significant research interest in enhanced solar-driven photocatalysis due to their strong localized surface plasmon resonance (LSPR). As this rapid-developing research area has begun to raise and answer fundamental questions that determine the photocatalytic performance of plasmonic photocatalysts, it is an opportune time to evaluate the advancement and propose future trajectories. We first outline the fundamentals of LSPR, including its excitation, decay, and influencing factors. We then discuss three main enhancement mechanisms and their applicable scenarios for plasmonic photocatalysis. We then critically assess the recent works performed by our groups concerning plasmon-enhanced photocatalytic reactions. By introducing related works from other researchers, we demonstrate our contributions to the advancements of plasmonic photocatalysis. Finally, we discuss the current challenges and suggest future directions in three aspects: material development, mechanism exploration, and application extension. It is anticipated to delineate the state-of-the-art and direct future research in plasmon-enhanced value-added chemical transformations.

9.
Mater Horiz ; 9(7): 1978-1983, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35603715

RESUMO

Piezocatalysis, the process of directly converting mechanical energy into chemical energy, has emerged as a promising alternative strategy for green H2 production. Nevertheless, conventional inorganic piezoelectric materials suffer from limited structural tailorability and small surface area, which greatly impedes their mechanically driven catalytic efficiency. Herein, we design and fabricate a novel UiO-66(Zr)-F4 metal-organic framework (MOF) nanosheet for piezocatalytic water splitting, with the highest H2 evolution rate reaching 178.5 µmol g-1 within 5 h under ultrasonic vibration excitation (110 W, 40 kHz), far exceeding that of the original UiO-66 host. A reduced bandgap from 2.78 to 2.43 eV is achieved after introducing a fluorinated ligand. Piezoresponse force microscopy measurements demonstrate a much stronger piezoelectric response for UiO-66(Zr)-F4, which may result from the polarity of the introduced fluorinated ligand. This work highlights the potential of MOF-based porous piezoelectric nanomaterials in harvesting mechanical energy to drive chemical reactions such as water splitting.

10.
Sci Total Environ ; 820: 153334, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35074376

RESUMO

Inspired by the classic ion-exchange reaction, a single phase material of Mg0.66Al0.34(OH)2(Mo3S13)0.03(NO3)0.14(CO3)0.07·H2O (Mo3S13-LDH) was masterly constructed by intercalating Mo3S132- into the MgAl-LDH gallery. Prepared Mo3S13-LDH displays excellent binding affinity and high selectivity for Ag(I) and Hg(II) in a mixed solution, in which an apparent selectivity order of Hg(II) > Ag(I) ≫ Pb(II), Cu(II), Ni(II), Co(II), Cd(II), and Mn(II) is observed. Enormous capture capacities (qmAg = 446.4 mg/g, qmHg = 354.6 mg/g) and fast equilibration time (within 60 min) place Mo3S13-LDH in the upper ranks of materials for such removal. For oxoanions, As(III) (HAsO32-) and Cr(VI) (CrO42-) can be specifically trapped by Mo3S13-LDH with comparable loading ability (qmAs = 61.8 mg/g, qmCr = 90.6 mg/g) in the coexistence of multiple interfering anions. Notably, high Hg(II) and Cr(VI) concentrations are finally reduced below the safe limit of drinking water. The excellent capture capacity of Mo3S13-LDH benefits from the rational design by following two aspects: (i) the multiple sulfur ligands in Mo3S132- groups give place to various capture modes and different affinity orders for target ions, and (ii) large-sized Mo3S132- groups widen the interlayer spacing of LDH, thereby accelerating the mass transfer process. Furthermore, the satisfactory structural stability of Mo3S13-LDH is also reflected through the unchanged hexagonal prismatic shape after adsorption. All of these highlight the great potential of Mo3S13-LDH for the application in water remediation.


Assuntos
Mercúrio , Poluentes Químicos da Água , Adsorção , Cromo , Cinética , Água , Poluentes Químicos da Água/análise
12.
J Med Chem ; 64(11): 7839-7852, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038131

RESUMO

Inspired by the success of dual-targeting drugs, especially bispecific antibodies, we propose to combine the concept of proteolysis targeting chimera (PROTAC) and dual targeting to design and synthesize dual PROTAC molecules with the function of degrading two completely different types of targets simultaneously. A library of novel dual-targeting PROTAC molecules has been rationally designed and prepared. A convergent synthetic strategy has been utilized to achieve high synthetic efficiency. These dual PROTAC structures are characterized using trifunctional natural amino acids as star-type core linkers to connect two independent inhibitors and E3 ligands together. In this study, gefitinib, olaparib, and CRBN or VHL E3 ligands were used as substrates to synthesize novel dual PROTACs. They successfully degraded both the epidermal growth factor receptor (EGFR) and poly(ADP-ribose) polymerase (PARP) simultaneously in cancer cells. Being the first successful example of dual PROTACs, this technique will greatly widen the range of application of the PROTAC method and open up a new field for drug discovery.


Assuntos
Desenho de Fármacos , Receptores ErbB/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Gefitinibe/química , Humanos , Ligantes , Ftalazinas/química , Piperazinas/química , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
13.
Nat Commun ; 12(1): 1231, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623017

RESUMO

Conversion of clean solar energy to chemical fuels is one of the promising and up-and-coming applications of metal-organic frameworks. However, fast recombination of photogenerated charge carriers in these frameworks remains the most significant limitation for their photocatalytic application. Although the construction of homojunctions is a promising solution, it remains very challenging to synthesize them. Herein, we report a well-defined hierarchical homojunction based on metal-organic frameworks via a facile one-pot synthesis route directed by hollow transition metal nanoparticles. The homojunction is enabled by two concentric stacked nanoplates with slightly different crystal phases. The enhanced charge separation in the homojunction was visualized by in-situ surface photovoltage microscopy. Moreover, the as-prepared nanostacks displayed a visible-light-driven carbon dioxide reduction with very high carbon monooxide selectivity, and excellent stability. Our work provides a powerful platform to synthesize capable metal-organic framework complexes and sheds light on the hierarchical structure-function relationships of metal-organic frameworks.

14.
iScience ; 23(10): 101642, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33043282

RESUMO

COVID-19 broke out in the end of December 2019 and is still spreading rapidly, which has been listed as an international concerning public health emergency. We found that the Spike protein of SARS-CoV-2 contains a furin cleavage site, which did not exist in any other betacoronavirus subtype B. Based on a series of analysis, we speculate that the presence of a redundant furin cut site in its Spike protein is responsible for SARS-CoV-2's stronger infectious nature than other coronaviruses, which leads to higher membrane fusion efficiency. Subsequently, a library of 4,000 compounds including approved drugs and natural products was screened against furin through structure-based virtual screening and then assayed for their inhibitory effects on furin activity. Among them, an anti-parasitic drug, diminazene, showed the highest inhibition effects on furin with an IC50 of 5.42 ± 0.11 µM, which might be used for the treatment of COVID-19.

15.
J Mater Chem B ; 8(35): 7856-7879, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32749426

RESUMO

Near infrared (NIR)-excitable and NIR-emitting probes have fuelled advances in biomedical applications owing to their power in enabling deep tissue imaging, offering high image contrast and reducing phototoxicity. There are essentially three NIR biological windows, i.e., 700-950 nm (NIR I), 1000-1350 nm (NIR II) and 1550-1870 nm (NIR III). Recently emerging optical probes that can be excited by an 800 nm laser and emit in the NIR II or III windows, denoted as NIR I-to-NIR II/III, are particularly attractive. That is because the longer wavelengths in the NIR II and NIR III windows offer deeper penetration and higher signal to noise ratio than those in the NIR I window. NIR imaging has indeed become a quickly evolving field and, simultaneously, stimulated the further development of new classes of NIR I-to-NIR II/III inorganic fluorescent probes, which include PbS, Ag2S-based quantum dots (QDs) and rare earth (RE) doped NPs (RENPs) that possess quite diverse optical properties and follow different emission mechanisms. This review summarizes the recent progress on material merits, synthetic routes, the rational choice of excitation in the NIR I window, NIR II/III emission optimization, and surface modification of aforementioned fluorescent probes. We also introduce the latest notable accomplishments enabled by these probes in fluorescence imaging, lifetime-based multiplexed imaging and photothermal therapy (PTT), together with a critical discussion of forthcoming challenges and perspectives for clinic use.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Compostos Inorgânicos , Pesquisa Biomédica , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Compostos Inorgânicos/síntese química , Compostos Inorgânicos/química
16.
Bioorg Chem ; 93: 103315, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31605927

RESUMO

Glutamic-oxaloacetic transaminase 1 (GOT1) regulates cellular metabolism through coordinating the utilization of carbohydrates and amino acids to meet nutrient requirements for sustained proliferation. As such, the GOT1 inhibitor may provide a new strategy for the treatment of various cancers. Adapalene has been approved by FDA for the treatment of acne, pimples and pustules, and it may also contribute to the adjunctive therapy for advanced stages of liver and colorectal cancers. In this work, we first examined the enzyme inhibition of over 500 compounds against GOT1 in vitro. As a result, Adapalene effectively inhibited GOT1 enzyme in a non-competitive manner. MST and DARTS assay further confirmed the high affinity between Adapalene and GOT1. Furthermore, the growth and migration of ovarian cancer ES-2 cells were obviously inhibited by the treatment of Adapalene. And it induced the apoptosis of ES-2 cells according to Western blot and Hoechst 33258 straining. In addition, molecular docking demonstrated that Adapalene coordinated in an allosteric site of GOT1 with low binding energy. Furthermore, knockdown of GOT1 in ES-2 cells decreased their anti-proliferative sensitivity to Adapalene. Together, our data strongly suggest Adapalene, as a GOT1 inhibitor, could be regarded as a potential drug candidate for ovarian cancer therapy.


Assuntos
Adapaleno/química , Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Adapaleno/metabolismo , Adapaleno/farmacologia , Sítio Alostérico , Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferase Citoplasmática/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Cinética , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo
17.
ChemSusChem ; 11(21): 3783-3789, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30215886

RESUMO

An effective cocatalyst is usually required to improve the performance of photoelectrochemical (PEC) water splitting catalysts. A fluorine-doped FeOOH (F:FeOOH) cocatalyst on a hematite photoanode was used to lower the onset potential by 140 mV and significantly improve the PEC performance. Moreover, a more effective dual cocatalytic system was prepared by subsequent loading of a FeNiOOH cocatalyst, which resulted in a further decrease of the onset potential by 270 mV. The final onset potential of the Fe2 O3 /F:FeOOH/FeNiOOH photoanode was lowered to 0.45 V versus the reversible hydrogen electrode (RHE), which is one of the lowest onset potential values ever reported for hematite photoanodes. The photocurrent also dramatically increased by a factor of approximately 3 to 0.9 mA cm-2 at 1.0 V versus RHE. Based on the structural, chemical, and electrochemical impedance spectroscopy characterization, the enhanced performance was attributed to the F:FeOOH overlayer, which reduced the surface recombination and accelerated the oxygen evolution reaction activity, and the FeNiOOH cocatalyst, which further enhanced the reaction kinetics. The facile preparation of the F:FeOOH cocatalyst and the design of the dual cocatalytic system will allow the development of high-performance hematite photoanodes.

18.
Meas Sci Technol ; 29(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30250357

RESUMO

Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt Fractional Derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an Atomic Force Microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R2 > 0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3 - 1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

19.
J Phys Chem Lett ; 9(18): 5317-5326, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30153727

RESUMO

Plasmonic Au nanoparticle (NP)-loaded hierarchical hollow porous TiO2 spheres are designed and synthesized with the purpose of enhancing the overall catalytic activity by introducing the Au plasmonic effect into the system, where Au NPs themselves are catalytically active. The constructed nanohybrid exhibits both high activity in 4-nitrophenol reduction, compared to all of the previously reported Au-based catalysts, and high selectivity. The synergy of the inherent catalytic property of Au NPs and the plasmonic effect (mainly via hot electron transfer) under irradiation is confirmed by a series of control experiments. The specifically designed, porous hollow structure also greatly contributes to the good catalytic activity because it provides a large surface area, facilitates reactant adsorption, and hinders charge recombination. In addition, theoretical calculations reveal that such a structure also leads to an increase in light absorption of about 21% in the range of 400-800 nm with respect to a uniform water-TiO2 background featuring the same filling factor. This work provides insight into the rational design of plasmon-enhanced catalysts that will show their versatility in various electro-/photocatalysis.

20.
ACS Appl Mater Interfaces ; 10(7): 6498-6504, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29401370

RESUMO

Performance of bulk heterojunction polymer solar cells (PSCs) highly relies on the morphology of the photoactive layer involving conjugated polymers and fullerene derivatives as donors and acceptors, respectively. Herein, butylamine was found to be able to optimize the morphology of the donor/acceptor (D/A) film composed of a blend of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). Compared to the commonly used alkane dithiols and halogenated additives with high boiling points, butylamine has a much lower boiling point between 77 and 79 °C, and it is also much "greener". A specific interaction between butylamine and PCBM was demonstrated to account for the morphology improvement. Essentially, butylamine can selectively dissolve PCBM in the P3HT:PCBM blend and facilitate the diffusion of PCBM in the film fabrication processes. Atomic force microscopy and X-ray photoelectron spectroscopy investigations confirmed the formation of the P3HT-enriched top surface and the abundance of PCBM at the bottom side, i.e., the formation of vertical phase segregation, as a consequence of the specific PCBM-butylamine interaction. The D/A film with inhomogeneously distributed D and A components in the vertical film direction, with more P3HT at the hole extraction side and more PCBM at the electron extraction side, enables more efficient charge extraction in the D/A film, reflected by the largely enhanced fill factor. The power conversion efficiency of devices reached 4.03 and 4.61%, respectively, depending on the thickness of the D/A film, and these are among the best values reported for P3HT:PCBM-based devices. As compared to the devices fabricated without the introduction of butylamine under otherwise the same processing conditions, they represented 19.6 and 21.6% improvement in the efficiency, respectively. The discovery of butylamine as a new, effective additive in enhancing the performance of PSCs strongly suggests that the differential affinity of additives toward donors and acceptors likely plays a more important role in morphology optimization than their boiling point, different from what was reported previously. The finding provides useful information for realizing large-area PSC fabrication, where a "greener" additive is always preferred.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA