Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
ACS Nano ; 18(22): 14348-14366, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768086

RESUMO

Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.


Assuntos
Doença de Alzheimer , Camundongos Transgênicos , Pericitos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Pericitos/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Curcumina/farmacologia , Curcumina/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Nanopartículas/química , Molécula 1 de Adesão de Célula Vascular/metabolismo , Humanos , Peptídeos/química , Peptídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química
2.
Acta Pharm Sin B ; 14(3): 1380-1399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486986

RESUMO

Intraneuronal dysproteostasis and extraneuronal microenvironmental abnormalities in Alzheimer's disease (AD) collectively culminate in neuronal deterioration. In the context of AD, autophagy dysfunction, a multi-link obstacle involving autophagy downregulation and lysosome defects in neurons/microglia is highly implicated in intra/extraneuronal pathological processes. Therefore, multidimensional autophagy regulation strategies co-manipulating "autophagy induction" and "lysosome degradation" in dual targets (neuron and microglia) are more reliable for AD treatment. Accordingly, we designed an RP-1 peptide-modified reactive oxygen species (ROS)-responsive micelles (RT-NM) loading rapamycin or gypenoside XVII. Guided by RP-1 peptide, the ligand of receptor for advanced glycation end products (RAGE), RT-NM efficiently targeted neurons and microglia in AD-affected region. This nano-combination therapy activated the whole autophagy-lysosome pathway by autophagy induction (rapamycin) and lysosome improvement (gypenoside XVII), thus enhancing autophagic degradation of neurotoxic aggregates and inflammasomes, and promoting Aß phagocytosis. Resultantly, it decreased aberrant protein burden, alleviated neuroinflammation, and eventually ameliorated memory defects in 3 × Tg-AD transgenic mice. Our research developed a multidimensional autophagy nano-regulator to boost the efficacy of autophagy-centered AD therapy.

3.
J Control Release ; 367: 604-619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295997

RESUMO

Mitochondrial dysfunction is a pivotal event in Alzheimer's disease (AD) pathogenesis. Lithospermic acid B (LA) has shown promise in safeguarding mitochondria, yet the underlying mechanism remains elusive. Here, we present evidence that LA rejuvenated AD-related mitochondrial pool by co-activating mitophagy and mitochondria biogenesis via PINK1/LC3B/P62 and PGC-1α/Nrf2. To advance in vivo application, hydrophilic LA was encapsulated in liposome (MT-LIP@LA) composed of D-mannosamine-cholesterol/DSPE-PEG2000-Tet1/lecithin (molar ratio, 3:0.3:10) for cascaded brain-neuron targeting. MT-LIP demonstrated 4.3-fold enhanced brain accumulation (2.57%dose/g-brain) than LIP (0.60%dose/g-brain) and precisely targeted neurons at AD lesion sites. Mechanism studies unraveled factors contributing to the preeminent brain targeting ability of MT-LIP: (1) high-density modified mannose efficiently binds to glucose transporter 1 (GLUT1) on blood-brain barrier (BBB); (2) prone to trafficking towards caveolin-Golgi pathway during transcytosis. This augmented therapeutic platform efficiently restored mitochondrial health, prevented neurodegeneration, and ameliorated memory deficits in 3 × Tg-AD transgenic mice. Our studies revealed the underlying pharmacological mechanism of LA and provided a concise but efficient platform for neuronal mitochondria quality control in vivo.


Assuntos
Doença de Alzheimer , Benzofuranos , Depsídeos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Lipossomos/metabolismo , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos
4.
Exp Parasitol ; 256: 108649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914152

RESUMO

Type 1 diabetes mellitus is a chronic disease caused by the destruction of pancreatic beta cells. Based on the hygiene hypothesis, a growing body of evidence suggests a negative association between parasitic infections and diabetes in humans and animal models. The mechanism of parasite-mediated prevention of type 1 diabetes mellitus may be related to the adaptive and innate immune systems. Macrophage polarization is a new paradigm for the treatment of type 1 diabetes mellitus, and different host macrophage subsets play various roles during parasite infection. Proinflammatory cytokines are released by M1 macrophages, which are important in the development of type 1 diabetes mellitus. Parasite-activated M2 macrophages prevent the development of type 1 diabetes mellitus and can influence the development of adaptive immune responses through several mechanisms, including Th2 cells and regulatory T cells. Here, we review the role and mechanism of macrophage polarization in parasitic protection against type 1 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 1 , Parasitos , Doenças Parasitárias , Humanos , Animais , Diabetes Mellitus Tipo 1/prevenção & controle , Macrófagos , Citocinas , Células Th2 , Ativação de Macrófagos
5.
J Med Internet Res ; 25: e44895, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824198

RESUMO

BACKGROUND: Machine learning is a potentially effective method for identifying and predicting the time of the onset of stroke. However, the value of applying machine learning in this field remains controversial and debatable. OBJECTIVE: We aimed to assess the value of applying machine learning in predicting the time of stroke onset. METHODS: PubMed, Web of Science, Embase, and Cochrane were comprehensively searched. The C index and sensitivity with 95% CI were used as effect sizes. The risk of bias was evaluated using PROBAST (Prediction Model Risk of Bias Assessment Tool), and meta-analysis was conducted using R (version 4.2.0; R Core Team). RESULTS: Thirteen eligible studies were included in the meta-analysis involving 55 machine learning models with 41 models in the training set and 14 in the validation set. The overall C index was 0.800 (95% CI 0.773-0.826) in the training set and 0.781 (95% CI 0.709-0.852) in the validation set. The sensitivity and specificity were 0.76 (95% CI 0.73-0.80) and 0.79 (95% CI 0.74-0.82) in the training set and 0.81 (95% CI 0.68-0.90) and 0.83 (95% CI 0.73-0.89) in the validation set, respectively. Subgroup analysis revealed that the accuracy of machine learning in predicting the time of stroke onset within 4.5 hours was optimal (training: 0.80, 95% CI 0.77-0.83; validation: 0.79, 95% CI 0.71-0.86). CONCLUSIONS: Machine learning has ideal performance in identifying the time of stroke onset. More reasonable image segmentation and texture extraction methods in radiomics should be used to promote the value of applying machine learning in diverse ethnic backgrounds. TRIAL REGISTRATION: PROSPERO CRD42022358898; https://www.crd.york.ac.uk/Prospero/display_record.php?RecordID=358898.


Assuntos
Etnicidade , Acidente Vascular Cerebral , Humanos , Aprendizado de Máquina , Pacientes , PubMed , Acidente Vascular Cerebral/diagnóstico
6.
ACS Nano ; 17(20): 19793-19809, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37805928

RESUMO

In pancreatic cancer, excessive desmoplastic stroma severely impedes drug access to tumor cells. By reverting activated pancreatic stellate cells (PSCs) to quiescence, all-trans retinoic acid (ATRA) can attenuate their stromal synthesis and remodel the tumor-promoting microenvironment. However, its modulatory effects have been greatly weakened due to its limited delivery to PSCs. Therefore, we constructed a tripeptide RFC-modified gelatin/oleic acid nanoparticle (RNP@ATRA), which delivered ATRA in an enzyme-triggered popcorn-like manner and effectively resolved the delivery challenges. Specifically, surface RFC was cleaved by aminopeptidase N (APN) on the tumor endothelium to liberate l-arginine, generating nitric oxide (NO) for tumor-specific vasodilation. Then, massive nanoparticles were pushed from the vessels into tumors, showing 5.1- and 4.0-fold higher intratumoral accumulation than free ATRA and APN-inert nanoparticles, respectively. Subsequently, in the interstitium, matrix metalloproteinase-2-induced gelatin degradation caused RNP@ATRA to rapidly release ATRA, promoting its interstitial penetration and PSC delivery. Thus, activated PSCs were efficiently reverted to quiescence, and stroma secretion and vascular compression were reduced, thereby enhancing intratumoral delivery of small-molecule or nanosized chemotherapeutics. Ultimately, RNP@ATRA combined with chemotherapeutics markedly suppressed tumor growth and metastasis without causing additional toxicities. Overall, this work provides a potential nanoplatform for the efficient delivery of PSC-modifying agents in pancreatic cancer and other stroma-rich tumors.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Metaloproteinase 2 da Matriz , Gelatina , Neoplasias Pancreáticas/patologia , Tretinoína/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Adv Healthc Mater ; 12(30): e2301861, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573475

RESUMO

Resident microglia are key factors in mediating immunity against brain tumors, but the microglia in malignant glioma are functionally impaired. Little immunotherapy is explored to restore microglial function against glioma. Herein, oleanolic acid (OA) (microglia "restorer") and D PPA-1 peptide (immune checkpoint blockade) are integrated on a nano-immuno-synergist (D PAM@OA) to work coordinately. The self-assembled OA core is coated with macrophage membrane for efficient blood-brain barrier penetration and microglia targeting, on which D PPA-1 peptide is attached via acid-sensitive bonds for specific release in tumor microenvironment. With the enhanced accumulation of the dual drugs in their respective action sites, D PAM@OA effectively promotes the recruitment and activation of effector T cells by inhibiting aberrant activation of Signal transducer and activator of transcription (STAT-3) pathway in microglia, and assists activated effector T cells in killing tumor cells by blocking elevated immune checkpoint proteins in malignant glioma. Eventually, as adjuvant therapy, the rationally designed nano-immuno-synergist hinders malignant glioma progression and recurrence with or without temozolomide. The work demonstrates the feasibility of a nano-formulation for microglia-based immunotherapy, which may provide a new direction for the treatment of brain tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Microglia/patologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Macrófagos/metabolismo , Peptídeos/farmacologia , Microambiente Tumoral
8.
J Glob Health ; 13: 06032, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37469290

RESUMO

Background: The efficacy of nirmatrelvir plus ritonavir (NMV-r) for vaccinated COVID-19 patients at high risk of progression is not adequately recognised. To address this gap, we conducted a systematic review and meta-analysis of current literature. Methods: We searched PubMed, Web of Science, Embase, Cochrane Library, and medRxiv for articles published up to 8 January 2023 on NMV-r in outpatients. At least two researchers screened articles, extracted data, and assessed the quality of selected studies. We evaluated the results via risk ratios (RRs) with 95% confidence intervals (CIs) and tested for heterogeneity using I2 statistics. Results: We included seven observational cohort studies comprising 224 238 vaccinated patients. According to our meta-analysis, NMV-r reduced 47% incidence of all-cause death or hospitalisation within 30 days for vaccinated patients (RR = 0.53; 95% CI = 0.40-0.70; I2 = 81%). After excluding the most influential result by sensitivity analysis, NMV-r still reduced risk of all-cause death or hospitalisation by 38% (RR = 0.62; 95% CI = 0.56-0.69; I2 = 0%). In our secondary outcome, NMV-r also showed its benefits in reducing all-cause death in vaccinated patients (RR = 0.40; 95% CI = 0.19-0.85; I2 = 23%). Conclusions: We found positive evidence for the use of NMV-r for vaccinated patients at high-risk of progression with mild to moderate COVID-19. However, large-scale RCTs are needed to confirm these findings. Registration: PROSPERO CRD42023391349.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Ritonavir/uso terapêutico , Tratamento Farmacológico da COVID-19 , Hospitalização
9.
Toxicol Appl Pharmacol ; 475: 116635, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487937

RESUMO

To explore the potential value of serum glutamate dehydrogenase (GLDH) combined with inflammatory cytokines as diagnostic biomarkers for anti-tuberculosis drug -induced liver injury (ATB-DILI). We collected the residual serum from the patients who met the criteria after liver function tests. We have examined these parameters including GLDH which were determined by enzyme-linked immunosorbent assay and cytokines which were determined by cytokine combination detection kit. Multivariate logistics stepwise forward regression was applied to establish regression models. A total of 138 tuberculosis patients were included in the diagnostic markers study of ATB-DILI, including normal liver function group (n = 108) and ATB-DILI group(n = 30). Serum GLDH, IL-6 and IL-10 levels were significantly increased in the ATB-DILI group. Receiver operating characteristic curve (ROC) curve showed that the area under curve (AUC) of serum GLDH, IL-6 and IL-10 for the diagnosis of ATB-DILI were 0.870, 0.714 and 0.811, respectively. In logistic regression modeling, the AUC of GLDH combined with IL-10 as an ATB-DILI marker is 0.912. Serum IL-6、IL-10 and GLDH levels began to rise preceded the increase in ALT by 7 days, with significant differences in IL-6 compared with 7 days. Serum GLDH, IL-6 and IL-10 levels were correlated with the severity of liver injury. In conclusion, we found that GLDH, IL-6 and IL-10 alone as diagnostic markers of ATB-DILI had good diagnostic efficacy. Logistic regression model established by GLDH and IL-10 had better diagnostic efficacy and IL-6 may be an early predictor of liver injury in the setting of ATB poisoning.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Glutamato Desidrogenase , Interleucina-10 , Interleucina-6 , Biomarcadores , Citocinas , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Antituberculosos/efeitos adversos
10.
Br J Clin Pharmacol ; 89(10): 3092-3104, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37259680

RESUMO

AIMS: To explore the potential value of serum glutamate dehydrogenase (GLDH), ferrochelatase (FECH), heme oxygenase-1 (HO-1) and glutathione-S-transferase-α (GST-α) as diagnostic biomarkers for liver injury caused by antituberculosis drugs. METHODS: We established a rat model of isoniazide-induced liver injury and recruited 122 hospitalized tuberculosis patients taking antituberculosis drugs. We detected the concentration of GLDH, FECH, HO-1 and GST-α by enzyme-linked immunosorbent assay. GraphPad Prism8 and SPSS 26.0 were used for statistical analysis. RESULTS: In the rat model, serum GLDH concentration gradually increased during isoniazid (INH) administration, while serum FECH, HO-1 and GST-α concentrations significantly increased after INH administration was stopped. The receiver operating characteristic curve showed that the areas under the curve (AUCs) of serum GLDH and FECH for the diagnosis of anti-tuberculosis (TB) drug-induced liver injury (anti-TB-DILI) were 0.7692 (95% confidence interval [CI] 0.5442-0.9943) and 0.7284 (95% CI 0.4863-0.9705) and the diagnostic accuracies were 81.25% and 78.79%, respectively. In clinical research, the AUCs of GLDH and FECH were 0.9124 (95% CI 0.8380-0.9867) and 0.6634 (95% CI 0.5391-0.7877), and the optimal thresholds were 10.40 mIU/mL and 1.304 ng/mL, respectively. The diagnostic accuracy, specificity and positive predictive value (PPV) of GLDH were 82.61%, 79.38% and 47.22%. We performed a joint diagnostic test for GLDH and FECH. The diagnostic accuracy (90.43%), specificity (91.75%) and PPV (65.21%) of serial tests were better than for GLDH and FECH alone. CONCLUSIONS: GLDH in the diagnosis of liver injury induced by anti-TB drugs has high sensitivity, but low specificity and low PPV. The combination of GLDH and FECH could significantly improve the specificity, PPV and diagnostic accuracy, and reduce the false-positive rate of anti-TB-DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Ratos , Animais , Antituberculosos/efeitos adversos , Glutamato Desidrogenase , Ferroquelatase , Fígado , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
11.
Drug Deliv Transl Res ; 13(11): 2869-2884, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37204680

RESUMO

Metastatic non-small cell lung cancer (NSCLC) is refractory with a very poor prognosis. Docetaxel (DTX) injection (Taxotere®) has been approved for the treatment of locally advanced or metastatic NSCLC. However, its clinical application is restricted by severe adverse effects and non-selective tissue distribution. In this study, we successfully developed DTX-loaded human serum albumin (HSA) nanoparticles (DNPs) with modified Nab technology, by introducing medium-chain triglyceride (MCT) as a stabilizer. The optimized formulation had a particle size of approximately 130 nm and a favorable stabilization time of more than 24 h. DNPs dissociated in circulation in a concentration-dependent manner and slowly released DTX. Compared with DTX injection, DNPs were more effectively taken up by NSCLC cells, thus exerting stronger inhibitory effects on their proliferation, adhesion, migration, and invasion. In addition, DNPs showed prolonged blood retention and increased tumor accumulation relative to DTX injection. Ultimately, DNPs produced more potent inhibitory effects on primary or metastatic tumor foci than DTX injections but caused markedly lower organ toxicity and hematotoxicity. Overall, these results support that DNPs hold great potential for the treatment of metastatic NSCLC in clinical.

12.
Acta Pharm Sin B ; 13(2): 834-851, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873190

RESUMO

Microglial surveillance plays an essential role in clearing misfolded proteins such as amyloid-beta, tau, and α-synuclein aggregates in neurodegenerative diseases. However, due to the complex structure and ambiguous pathogenic species of the misfolded proteins, a universal approach to remove the misfolded proteins remains unavailable. Here, we found that a polyphenol, α-mangostin, reprogrammed metabolism in the disease-associated microglia through shifting glycolysis to oxidative phosphorylation, which holistically rejuvenated microglial surveillance capacity to enhance microglial phagocytosis and autophagy-mediated degradation of multiple misfolded proteins. Nanoformulation of α-mangostin efficiently delivered α-mangostin to microglia, relieved the reactive status and rejuvenated the misfolded-proteins clearance capacity of microglia, which thus impressively relieved the neuropathological changes in both Alzheimer's disease and Parkinson's disease model mice. These findings provide direct evidences for the concept of rejuvenating microglial surveillance of multiple misfolded proteins through metabolic reprogramming, and demonstrate nanoformulated α-mangostin as a potential and universal therapy against neurodegenerative diseases.

13.
J Control Release ; 355: 604-621, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738970

RESUMO

Since the complex interactions of multiple mechanisms involved in Alzheimer's disease (AD) preclude the monotherapeutic approaches from clinical application, combination therapy has become an attractive strategy for AD treatment. However, to be emphasized, the realization of the edges of combination therapy greatly depends on the reasonable choice of targets and the rational design of combination scheme. Acknowledgedly, amyloid plaques and hyperphosphorylated tau (p-tau) are two main hallmarks in AD with close pathological correlations, implying the hopeful prospect of combined intervention in them for AD treatment. Herein, we developed the nano-combination system, neuron-targeting PEG-PLA nanoparticles (CT-NP) loading two peptide drugs H102, a ß-sheet breaker acting on Aß, and NAP, a microtubule stabilizer acting on p-tau. Compared with free peptide combination, nano-combination system partly aligned the in vivo behaviors of combined peptides and enhanced peptide accumulation in lesion neurons by the guidance of targeting peptide CGN and Tet1, facilitating the therapeutic performance of peptide combination. Further, to maximize the therapeutic potential of nano-combination system, the combination ratio and mode were screened by the quantitative evaluation with combination index and U test, respectively, in vitro and in vivo. The results showed that the separated-loading CT-NP at the combination molar ratio of 2:1 (H102:NAP), CT-NP/H102 + CT-NP/NAP(2:1), generated the strongest synergistic therapeutic effects on Aß, p-tau and their linkage, and effectually prevented neuroinflammation, reversed the neuronal damage and restored cognitive performance in 3 × Tg-AD transgenic mice. Our studies provide critical data on the effectiveness of nano-combination therapy simultaneously intervening in Aß and p-tau, confirming the promising application of nano-combination strategy in AD treatment.


Assuntos
Doença de Alzheimer , Nanopartículas , Camundongos , Animais , Doença de Alzheimer/terapia , Encéfalo/metabolismo , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Camundongos Transgênicos , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
14.
Int J Biol Macromol ; 230: 123147, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621729

RESUMO

Photodynamic therapy is a promising novel tumor treatment method. In this study, novel porphyrin-chrysin photosensitizer derivatives were synthesized. Most of the compounds showed antitumor activity against human cervical cancer HeLa cells and human lung cancer A549 cells, among which compound 4c had the best photodynamic therapy effect on HeLa cells and A549 cells, with IC50 values of 6.26 µM and 23.37 µM, respectively. Free-base porphyrin-chrysin derivatives bind to DNA through surface self-stacking, and zinc metalloporphyrin-chrysin derivatives bind to ct-DNA through intercalation. Notably, the tightness of compound binding to ct-DNA was positively correlated with its antitumor activity. What's more, three-dimensional quantitative conformation studies have shown that increasing the positive charge of the porphyrin ring and introducing a strong electron-withdrawing group at the meso position of the porphyrin ring at the para-position of the benzene ring or reducing the space volume of the compound can enhance the antitumor activity.


Assuntos
Antineoplásicos , Porfirinas , Humanos , Células HeLa , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/química , Células A549 , DNA/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células
16.
Nat Protoc ; 18(1): 208-238, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36376589

RESUMO

Uncultivated Bacteria and Archaea account for the vast majority of species on Earth, but obtaining their genomes directly from the environment, using shotgun sequencing, has only become possible recently. To realize the hope of capturing Earth's microbial genetic complement and to facilitate the investigation of the functional roles of specific lineages in a given ecosystem, technologies that accelerate the recovery of high-quality genomes are necessary. We present a series of analysis steps and data products for the extraction of high-quality metagenome-assembled genomes (MAGs) from microbiomes using the U.S. Department of Energy Systems Biology Knowledgebase (KBase) platform ( http://www.kbase.us/ ). Overall, these steps take about a day to obtain extracted genomes when starting from smaller environmental shotgun read libraries, or up to about a week from larger libraries. In KBase, the process is end-to-end, allowing a user to go from the initial sequencing reads all the way through to MAGs, which can then be analyzed with other KBase capabilities such as phylogenetic placement, functional assignment, metabolic modeling, pangenome functional profiling, RNA-Seq and others. While portions of such capabilities are available individually from other resources, the combination of the intuitive usability, data interoperability and integration of tools in a freely available computational resource makes KBase a powerful platform for obtaining MAGs from microbiomes. While this workflow offers tools for each of the key steps in the genome extraction process, it also provides a scaffold that can be easily extended with additional MAG recovery and analysis tools, via the KBase software development kit (SDK).


Assuntos
Metagenoma , Microbiota , Filogenia , Genoma Bacteriano , Microbiota/genética , Bactérias/genética , Metagenômica
17.
ACS Nano ; 16(7): 11455-11472, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35839463

RESUMO

Mitochondrial dysfunction in neurons has recently become a promising therapeutic target for Alzheimer's disease (AD). Regulation of dysfunctional mitochondria through multiple pathways rather than antioxidation monotherapy indicates synergistic therapeutic effects. Therefore, we developed a multifunctional hybrid peptide HNSS composed of antioxidant peptide SS31 and neuroprotective peptide S14G-Humanin. However, suitable peptide delivery systems with excellent loading capacity and effective at-site delivery are still absent. Herein, the nanoparticles made of citraconylation-modified poly(ethylene glycol)-poly(trimethylene carbonate) polymer (PEG-PTMC(Cit)) exhibited desirable loading of HNSS peptide through electrostatic interactions. Meanwhile, based on fibroblast growth factor receptor 1(FGFR1) overexpression in both the blood-brain barrier and cholinergic neuron, an FGFR1 ligand-FGL peptide was modified on the nanosystem (FGL-NP(Cit)/HNSS) to achieve 4.8-fold enhanced accumulation in brain with preferred distribution into cholinergic neurons in the diseased region. The acid-sensitive property of the nanosystem facilitated lysosomal escape and intracellular drug release by charge switching, resulting in HNSS enrichment in mitochondria through directing of the SS31 part. FGL-NP(Cit)/HNSS effectively rescued mitochondria dysfunction via the PGC-1α and STAT3 pathways, inhibited Aß deposition and tau hyperphosphorylation, and ameliorated memory defects and cholinergic neuronal damage in 3xTg-AD mice. The work provides a potential platform for targeted cationic peptide delivery, harboring utility for peptide therapy in other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Peptídeos/química , Encéfalo/metabolismo , Mitocôndrias , Neurônios Colinérgicos/metabolismo , Peptídeos beta-Amiloides/metabolismo
18.
Materials (Basel) ; 15(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744270

RESUMO

Recently, research has centered on developing new approaches, such as supervised machine learning techniques, that can compute the mechanical characteristics of materials without investing much effort, time, or money in experimentation. To predict the 28-day compressive strength of steel fiber-reinforced concrete (SFRC), machine learning techniques, i.e., individual and ensemble models, were considered. For this study, two ensemble approaches (SVR AdaBoost and SVR bagging) and one individual technique (support vector regression (SVR)) were used. Coefficient of determination (R2), statistical assessment, and k-fold cross validation were carried out to scrutinize the efficiency of each approach used. In addition, a sensitivity technique was used to assess the influence of parameters on the prediction results. It was discovered that all of the approaches used performed better in terms of forecasting the outcomes. The SVR AdaBoost method was the most precise, with R2 = 0.96, as opposed to SVR bagging and support vector regression, which had R2 values of 0.87 and 0.81, respectively. Furthermore, based on the lowered error values (MAE = 4.4 MPa, RMSE = 8 MPa), statistical and k-fold cross validation tests verified the optimum performance of SVR AdaBoost. The forecast performance of the SVR bagging models, on the other hand, was equally satisfactory. In order to predict the mechanical characteristics of other construction materials, these ensemble machine learning approaches can be applied.

19.
Front Immunol ; 13: 814429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250992

RESUMO

OBJECTIVES: To evaluate the safety of each anti-TNF therapy for patients with rheumatoid arthritis (RA) and then make the best choice in clinical practice. METHODS: We searched PUBMED, EMBASE, and the Cochrane Library. The deadline for retrieval is August 2021. The ORs, Confidence Intervals (CIs), and p values were calculated by STATA.16.0 software for assessment. RESULT: 72 RCTs involving 28332 subjects were included. AEs were more common with adalimumab combined disease-modifying anti-rheumatic drugs (DMARDs) compared with placebo (OR = 1.60, 95% CI: 1.06, 2.42), DMARDs (1.28, 95% CI: 1.08, 1.52), etanercept combined DMARDs (1.32, 95% CI: 1.03, 1.67); certolizumab combined DMARDs compared with placebo (1.63, 95% CI: 1.07, 2.46), DMARDs (1.30, 95% CI: 1.10, 1.54), etanercept combined DMARDs (1.34, 95% CI: 1.05, 1.70). In SAEs, comparisons between treatments showed adalimumab (0.20, 95% CI: 0.07, 0.59), etanercept combined DMARDs (0.39, 95% CI: 0.15, 0.96), golimumab (0.19, 95% CI: 0.05, 0.77), infliximab (0.15, 95% CI: 0.03,0.71) decreased the risk of SAEs compared with golimumab combined DMARDs. In infections, comparisons between treatments showed adalimumab combined DMARDs (0.59, 95% CI: 0.37, 0.95), etanercept (0.49, 95% CI: 0.28, 0.88), etanercept combined DMARDs (0.56, 95% CI: 0.35, 0.91), golimumab combined DMARDs (0.51, 95% CI: 0.31, 0.83) decreased the risk of infections compared with infliximab combined DMARDs. No evidence indicated that the use of TNF-α inhibitors influenced the risk of serious infections, malignant tumors. CONCLUSION: In conclusion, we regard etanercept monotherapy as the optimal choice for RA patients in clinical practice when the efficacy is similar. Conversely, certolizumab + DMARDs therapy is not recommended. SYSTEMATIC REVIEW REGISTRATION: identifier PROSPERO CRD42021276176.


Assuntos
Antirreumáticos , Artrite Reumatoide , Adalimumab/efeitos adversos , Antirreumáticos/efeitos adversos , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Certolizumab Pegol/efeitos adversos , Etanercepte/efeitos adversos , Humanos , Infliximab/uso terapêutico , Metanálise em Rede , Inibidores do Fator de Necrose Tumoral/efeitos adversos , Fator de Necrose Tumoral alfa/uso terapêutico
20.
Bioact Mater ; 11: 300-316, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34977433

RESUMO

Compromised autophagy and defective lysosomal clearance significantly contribute to impaired neuronal proteostasis, which represents a hallmark of Alzheimer's disease (AD) and other age-related neurodegenerative disorders. Growing evidence has implicated that modulating autophagic flux, instead of inducing autophagosome formation alone, would be more reliable to rescue neuronal proteostasis. Concurrently, selectively enhancing drug concentrations in the leision areas, instead of the whole brain, will maximize therapeutic efficacy while reduing non-selective autophagy induction. Herein, we design a ROS-responsive targeted micelle system (TT-NM/Rapa) to enhance the delivery efficiency of rapamycin to neurons in AD lesions guided by the fusion peptide TPL, and facilitate its intracellular release via ROS-mediated disassembly of micelles, thereby maximizing autophagic flux modulating efficacy of rapamycin in neurons. Consequently, it promotes the efficient clearance of intracellular neurotoxic proteins, ß-amyloid and hyperphosphorylated tau proteins, and ameliorates memory defects and neuronal damage in 3 × Tg-AD transgenic mice. Our studies demonstrate a promising strategy to restore autophagic flux and improve neuronal proteostasis by rationally-engineered nano-systems for delaying the progression of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA