Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Chemosphere ; 358: 142238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705413

RESUMO

Predicting the metabolic activation mechanism and potential hazardous metabolites of environmental endocrine-disruptors is a challenging and significant task in risk assessment. Here the metabolic activation mechanism of benzophenone-3 catalyzed by P450 1A1 was investigated by using Molecular Dynamics, Quantum Mechanics/Molecular Mechanics and Density Functional Theory approaches. Two elementary reactions involved in the metabolic activation of BP-3 with P450 1A1: electrophilic addition and hydrogen abstraction reactions were both discussed. Further conversion reactions of epoxidation products, ketone products and the formaldehyde formation reaction were investigated in the non-enzymatic environment based on previous experimental reports. Binding affinities analysis of benzophenone-3 and its metabolites to sex hormone binding globulin indirectly demonstrates that they all exhibit endocrine-disrupting property. Toxic analysis shows that the eco-toxicity and bioaccumulation values of the benzophenone-3 metabolites are much lower than those of benzophenone-3. However, the metabolites are found to have skin-sensitization effects. The present study provides a deep insight into the biotransformation process of benzophenone-3 catalyzed by P450 1A1 and alerts us to pay attention to the adverse effects of benzophenone-3 and its metabolites in human livers.


Assuntos
Benzofenonas , Citocromo P-450 CYP1A1 , Disruptores Endócrinos , Benzofenonas/metabolismo , Disruptores Endócrinos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Teoria Quântica , Humanos , Simulação de Dinâmica Molecular , Catálise , Biotransformação
2.
Front Pharmacol ; 15: 1336232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708081

RESUMO

Background: Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that has been reported as a potential treatment for non-alcoholic fatty liver disease (NAFLD). However, extensive phase II metabolism and poor aqueous solubility led to a decrease in the chrysin concentration in the blood after oral administration, limiting its pharmacological development in vivo. Methods: In the present study, we synthesized a novel chrysin derivative prodrug (C-1) to address this issue. We introduced a hydrophilic prodrug group at the 7-position hydroxyl group, which is prone to phase II metabolism, to improve water solubility and mask the metabolic site. Further, we evaluated the ameliorative effects of C-1 on NAFLD in vitro and in vivo by NAFLD model cells and db/db mice. Results: In vitro studies indicated that C-1 has the ability to ameliorate lipid accumulation, cellular damage, and oxidative stress in NAFLD model cells. In vivo experiments showed that oral administration of C-1 at a high dose (69.3 mg/kg) effectively ameliorated hyperlipidemia and liver injury and reduced body weight and liver weight in db/db mice, in addition to alleviating insulin resistance. Proteomic analysis showed that C-1 altered the protein expression profile in the liver and particularly improved the expression of proteins associated with catabolism and metabolism. Furthermore, in our preliminary pharmacokinetic study, C-1 showed favorable pharmacokinetic properties and significantly improved the oral bioavailability of chrysin. Conclusion: Our data demonstrated that C-1 may be a promising agent for NAFLD therapy.

3.
Mol Ther Oncol ; 32(1): 200762, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596285

RESUMO

Circulating tumor cells (CTCs) are the seeds of distant metastases of malignant tumors and are associated with malignancy and risk of metastasis. However, tumor cells undergo epithelial-mesenchymal transition (EMT) during metastasis, leading to the emergence of different types of CTCs. Real-time dynamic molecular and functional typing of CTCs is necessary to precisely guide personalized treatment. Most CTC detection systems are based on epithelial markers that may fail to detect EMT CTCs. Therefore, it is clinically important to identify new markers of different CTC types. In this study, bioinformatics analysis and experimental assays showed that trophoblast cell surface antigen 2 (TROP2), a target molecule for advanced palliative treatment of triple-negative breast cancer (TNBC), was highly expressed in TNBC tissues and tumor cells. Furthermore, TROP2 can promote the migration and invasion of TNBC cells by upregulating EMT markers. The specificity and potential of TROP2 as an EMT-associated marker of TNBC CTCs were evaluated by flow cytometry, immunofluorescence, spiking experiments, and a well-established CTC assay. The results indicated that TROP2 is a potential novel CTC marker associated with EMT, providing a basis for more efficacious markers that encompass CTC heterogeneity in patients with TNBC.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38597319

RESUMO

A rechargeable aqueous hybrid ion alkaline battery, using a proton and a potassium ion as charge carriers for the anode and cathode, respectively, is proposed in this study by using well-developed potassium nickel hexacyanoferrate as the cathode material and mesoporous carbon sheets as the anode material, respectively. The constructed battery operates in a concentrated KOH solution, in which the energy storage mechanism for potassium nickel hexacyanoferrate involves the redox reaction of Fe2+/Fe3+ associated with potassium ion insertion/extraction and the redox reaction of Ni(OH)2/NiOOH. The mechanism for the carbon anode is electrochemical hydrogen storage. The cathode made of potassium nickel hexacyanoferrate exhibits both an ultrahigh capacity of 232.7 mAh g-1 under 100 mA g-1 and a consistent performance of 214 mAh g-1 at 2000 mA g-1 (with a capacity retention of 92.8% after 200 cycles). The mesoporous carbon sheet anode exhibits a capacity of 87.6 mAh·g-1 at 100 mA g-1 with a good rate and cyclic performance. The full cell provides an operational voltage of 1.55 V, a capacity of 93.6 mAh g-1 at 100 mA g-1, and 82.4% capacity retention after 1000 cycles at 2000 mA g-1 along with a low self-discharge rate. The investigation and discussion about the energy storage mechanisms for both electrode materials are also provided.

6.
New Phytol ; 242(1): 211-230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326975

RESUMO

Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Fenazinas/metabolismo , Doenças das Plantas/genética
7.
Pestic Biochem Physiol ; 196: 105616, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945231

RESUMO

Insect nicotinic acetylcholine receptors (nAChRs) are the directed targets of many insecticides. However, there have been no reports on the molecular characterization of the nAChR gene family or the causal association between nAChR α1 and resistance to insecticides in S. exigua, which is a significant agricultural pest. In this study, we identified a total of 9 candidate nAChR subunits in S. exigua, namely nAChR α1-α7 and nAChR ß1-ß2. For functional validation roles of Seα1 in insecticide resistance of S. exigua, we introduced a âˆ¼ 1041-bp deletion of the Seα1 gene in a homozygous mutant strain (Seα1-KO) by CRISPR/Cas9 genome editing system, resulting in a premature truncation of the Seα1 protein and the subsequent loss of functional transmembrane (TM) 3 and TM4 elements. Compared with WH-S strain (wild-type strain), the Seα1-KO strain exhibited 2.62-folds resistant to trifluoropyrimidine, 8.3-folds resistant to dimehypo, and 5.28-folds resistant to dinotefuran, but no significant change in susceptibility to emamectin benzoate, spinetoram, lambda-cyhalothrin, permethrin and chlorpyrifos. Thus, this study has laid a solid foundation for investigating the role of nAChRs in S. exigua, and provides evidence for the crucial involvement of the α1 subunit in the mechanism of trifluoropyrimidine, dimehypo, and dinotefuran in S. exigua. Moreover, it provides a reference for the value of Seα1 subunit and its homologues in other species as insecticide targets.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Inseticidas/farmacologia , Spodoptera/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Sistemas CRISPR-Cas , Tecnologia
8.
Appl Opt ; 62(27): 7254-7262, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37855582

RESUMO

Acceleration monitoring is an important technical means of seismic monitoring, oil exploration, deep well observation, etc. A miniaturized fiber Bragg grating (FBG) acceleration sensor with three cantilever beams is proposed against the fact that it is difficult for fiber-optic sensors to meet the requirements for low-frequency vibration monitoring. First, the model of the FBG acceleration sensor was built and theoretically analyzed; second, the effect of structural parameters on sensor sensitivity and natural frequency was analyzed, and the sensors were subjected to static stress analysis and modal simulation analysis through the ANSYS finite element analysis software; finally, the real sensors were developed and subjected to performance tests with a low-frequency vibration test system. According to the result, the natural frequency of the sensor is about 64 Hz, and its sensitivity is 201.3 pm/g; favorable linearity is observed at the working frequency band of 0.1-40 Hz, and the transverse interference is less than 2.51%. The research findings offer a reference for the development of like sensors and the further exploration of the lower limit of low frequency.

9.
Heliyon ; 9(10): e20747, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860565

RESUMO

In this study, we analyzed the chemical compositions of Alangium platanifolium (Sieb. et Zucc.) Harms (AP) using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) non-targeted plant metabolomics integration MolNetEnhancer strategy. A total of 75 compounds, including flavonoids, alkaloids, terpenes, C21 steroids, among others, were identified by comparing accurate mass-to-charge ratios, MS2 cleavage fragments, retention times, and MolNetenhancer-integrated analytical data, and the cleavage rules of the characteristic compounds were analyzed. A total of 125 potential cervical cancer (CC) therapeutic targets were obtained through Gene Expression Omnibus (GEO) data mining, differential analysis, and database screening. Hub targets were obtained by constructing protein-protein interaction (PPI) networks and CytoNCA topology analysis, including SRC, STAT3, TP53, PIK3R1, MAPK3, and PIK3CA. According to Gene ontology (GO) analysis, AP was primarily against CC by influencing gland development, oxidative stress processes, serine/threonine kinase, and tyrosine kinase activity. Enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the PI3K/AKT and MAPK signaling pathways play a crucial role in AP treatment for CC. The compound-target-pathway (C-T-P) network revealed that quercetin, methylprednisolone, and caudatin may play key roles in the treatment of CC. The results of molecular docking revealed that the core compound could bind significantly to the core target. In this study, the compounds in AP were systematically analyzed qualitatively, and the core components, core targets, and mechanisms of action of AP in the treatment of CC were screened through a combination of network pharmacology tools. Providing a scientific reference for the therapeutic material basis and quality control of AP.

10.
Parasit Vectors ; 16(1): 326, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705064

RESUMO

BACKGROUND: Female mosquitoes need a blood meal after mating for their eggs to develop, and this behavior leads to the spread of pathogens. Therefore, understanding the molecular regulation of reproduction in female mosquitoes is essential to control mosquito vector populations. In this study, we reported that microRNA-989 (miR-989), which targets 5-HTR1 (encoding secreted 5-hydroxytryptamine receptor1), is essential for mosquito reproduction. METHODS: The spatiotemporal expression profile of miR-989 was detected using quantitative real-time reverse transcription PCR (RT-qPCR). miR-989 antagomirs and antagomir-negative control (NC) were designed and synthesized to knock down the expression of endogenous miR-989 in female mosquitoes. RNA sequencing was used to analyze the ovarian response to miR-989 deletion. The targets of miR-989 were predicted and confirmed using RNAhybrid and dual-luciferase assays. RESULTS: miR-989 is exclusively expressed in female mosquito ovaries and responds to blood feeding. Injection of the miR-989 antagomir resulted in smaller ovaries and reduced egg production. 5-HTR1 was demonstrated as a target of miR-989. The deletion of miR-989 contributed to the upregulation of 5-HTR1 expression. Knockdown of 5-HTR1 rescued the adverse egg production caused by miR-989 silencing. Thus, miR-989 might play an essential role in female reproduction by targeting 5-HTR1. CONCLUSIONS: We found that miR-989 targets 5-HTR1 and participates in the regulation of reproduction in female mosquitoes. These findings expand our understanding of reproduction-related miRNAs and promote new control strategies for mosquitoes.


Assuntos
Culex , Culicidae , MicroRNAs , Animais , Feminino , Culex/genética , Serotonina , Antagomirs , MicroRNAs/genética
11.
Opt Lett ; 48(11): 2917-2920, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262243

RESUMO

Discrete frequency-bin entanglement is an essential resource for applications in quantum information processing. In this Letter, we propose and demonstrate a scheme to generate discrete frequency-bin entanglement with a single piece of periodically poled lithium niobate waveguide in a modified Sagnac interferometer. Correlated two-photon states in both directions of the Sagnac interferometer are generated through cascaded second-order optical nonlinear processes. A relative phase difference between the two states is introduced by changing the polarization state of pump light, thus manipulating the two-photon state at the output of the Sagnac interferometer. The generated two-photon state is sent into a fiber polarization splitter, and then a pure discrete frequency-bin entangled two-photon state is obtained by setting the pump light. The frequency entanglement property is measured by a spatial quantum beating with a visibility of 96.0±6.1%. The density matrix is further obtained with a fidelity of 98.0±3.0% to the ideal state. Our demonstration provides a promising method for the generation of pure discrete frequency-bin entanglement at the telecom band, which is desired in quantum photonics.

12.
Light Sci Appl ; 12(1): 115, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164962

RESUMO

Quantum teleportation can transfer an unknown quantum state between distant quantum nodes, which holds great promise in enabling large-scale quantum networks. To advance the full potential of quantum teleportation, quantum states must be faithfully transferred at a high rate over long distance. Despite recent impressive advances, a high-rate quantum teleportation system across metropolitan fiber networks is extremely desired. Here, we demonstrate a quantum teleportation system which transfers quantum states carried by independent photons at a rate of 7.1 ± 0.4 Hz over 64-km-long fiber channel. An average single-photon fidelity of ≥90.6 ± 2.6% is achieved, which exceeds the maximum fidelity of 2/3 in classical regime. Our result marks an important milestone towards quantum networks and opens the door to exploring quantum entanglement based informatic applications for the future quantum internet.

13.
Obesity (Silver Spring) ; 31(6): 1600-1609, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37157112

RESUMO

OBJECTIVE: The aim of this study was to quantify abdominal adiposity and generate data-driven adiposity subtypes with different diabetes risks. METHODS: A total of 3817 participants from the Pinggu Metabolic Disease Study were recruited. A deep-learning-based recognition model on abdominal computed tomography (CT) images (A-CT model) was developed and validated in 100 randomly selected cases. The volumes and proportions of subcutaneous fat, visceral fat, liver fat, and muscle fat were automatically recognized in all cases. K-means clustering was used to identify subgroups using the proportions of the four fat components. RESULTS: The Dice indices among the measurements assessed by the A-CT model and manual evaluation to detect liver fat, muscle fat, and subcutaneous fat areas were 0.96, 0.95, and 0.92, respectively. Three subtypes were generated separately in men and women: visceral fat dominant type (VFD); subcutaneous fat dominant type (SFD); and intermuscular fat dominant type (MFD). Compared with the SFD group, the MFD group had similar diabetes risk, and the VFD group had a 60% higher diabetes risk when age and BMI were adjusted for in men. The adjusted odds ratio for diabetes was 1.92 (95% CI: 1.32-2.78) in the MFD group and 6.14 (95% CI: 4.18-9.03) in the VFD group in women. CONCLUSIONS: This study identified gender-specific abdominal adiposity subgroups, which may help clinicians to distinguish diabetes risk quickly and automatically.


Assuntos
Adiposidade , Aprendizado Profundo , Masculino , Humanos , Feminino , Obesidade/metabolismo , Tomografia Computadorizada por Raios X , Fígado/metabolismo , Obesidade Abdominal/diagnóstico por imagem , Obesidade Abdominal/metabolismo , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/metabolismo
14.
Front Immunol ; 14: 1152678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215111

RESUMO

Background: Glucosamine 6-phosphate N-acetyltransferase (GNPNAT1) is a crucial enzyme involving hexosamine biosynthesis pathway and is upregulated in breast cancer (BRCA). However, its biological function and mechanism on patients in BRCA have not been investigated. Methods: In this study, the differential expression of GNPNAT1 was analyzed between BRCA tissues and normal breast tissues using the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, which was validated by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry. Then, the potential clinical value of GNPNAT1 in BRCA was investigated based on TCGA database. Functional enrichment analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Variation Analysis, were performed to explore the potential signaling pathways and biological functions involved in GNPNAT1 in BRCA. Tumor immune infiltration was analyzed using ESTIMATE, CIBERSORT and TISIDB database; and immune therapy response scores were assessed using TIDE. Finally, Western blot, Cell counting kit-8 and Transwell assay were used to determine the proliferation and invasion abilities of breast cancer cells with GNPNAT1 knockdown. Results: GNPNAT1 was up-regulated in BRCA tissues compared with normal tissues which was subsequently verified in different cell lines and clinical tissue samples. Based on TCGA and GEO, the overexpression of GNPNAT1 in BRCA contributed to a significant decline in overall survive and disease specific survive. Functional enrichment analyses indicated that the enriched pathways in high GNPNAT1 expression group included citrate cycle, N-glycan biosynthesis, DNA repair, and basal transcription factors. Moreover, the overexpression of GNPNAT1 was negatively correlated with immunotherapy response and the levels of immune cell infiltration of CD8+ T cells, B cells, natural killer cells, dendritic cells and macrophages. Knockdown of GNPNAT1 impairs the proliferation and invasion abilities of breast cancer cells. Conclusion: GNPNAT1 is a potential diagnostic, prognostic biomarker and novel target for intervention in BRCA.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Mama , Imunoterapia , Biomarcadores , Linfócitos B , Glucosamina 6-Fosfato N-Acetiltransferase
15.
Chemosphere ; 330: 138693, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060956

RESUMO

Recent studies have revealed that a combination of zero-valent iron (ZVI) and pyrite (FeS2) can effectively remove (Cr(VI)) from water, but the reasons behind this synergistic effect are still unclear. Our batch experiments showed that dissolved oxygen (DO) is a critical factor in the improved removal of Cr(VI) by ZVI and pyrite. When 0.08 g/L pyrite was combined with 0.5 g/L ZVI in the presence of DO, total Cr was reduced from 10 mg/L to 0.02 mg/L within 6 h. Conversely, in the absence of DO, total Cr was only reduced to 5.6 mg/L. DO oxidation of pyrite produced protons that promote ZVI corrosion, and mixing pyrite with water creates dissolved sulfide, which also contributes to the improved removal of Cr(VI). Electron microscopy images and X-ray absorption near edge structure analyses revealed that the presence of dissolved sulfide led to the formation of ferrous sulfide precipitates on the ZVI surface, preventing the formation of a passivating layer.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Cromo/química , Sulfetos , Prótons , Poluentes Químicos da Água/química
16.
Mol Carcinog ; 62(7): 1009-1024, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042573

RESUMO

Pyruvate dehydrogenase kinase 1 (PDK1) is a widely known glycolytic enzyme, and some evidence showed that PDK1 promoted breast cancer by multiple approaches. However, very few lncRNAs have been identified to be associated with PDK1 in breast cancer in previous research. In this study, we found that lncRNA sprouty4-intron transcript 1 (SPRY4-IT1) was regulated by PDK1 with correlation analysis, and PDK1 upregulated SPRY4-IT1 remarkably in breast cancer cells, as PDK1 interacted with SPRY4-IT1 in the nucleus and significantly enhanced the stability of SRPY4-IT1. Furthermore, SPRY4-IT1 was highly expressed in breast cancer, significantly promoted the proliferation and inhibited apoptosis of breast cancer cells. In terms of mechanism, SPRY4-IT1 inhibited the transcription of NFKBIA and the expression of IκBα, thus promoting the formation of p50/p65 complex and activating NF-κB signaling pathway, which facilitated survival of breast cancer cells. Therefore, our finding reveals that PDK1/SPRY4-IT1/NFKBIA axis plays a crucial role that promoting tumor progression, and SPRY4-IT1 knockdown incombined with PDK1 inhibitor is promising to be a new therapeutic strategy in breast cancer.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Íntrons , Proliferação de Células/genética , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica
17.
Bioorg Med Chem Lett ; 81: 129128, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639036

RESUMO

7-Ethyl-10-hydroxycamptothecin (SN38), the bioactive metabolite of irinotecan (CPT-11), has been shown to be 100-1000 times more effective than CPT-11. However, the poor water solubility and bioavailability of SN38 constrained its clinical application. In this study, we synthesized a novel SN38-glucose conjugate (FSY04) to address this issue. Our in vitro studies indicated that FSY04 had a potent inhibitory ability against colorectal cancer (CRC) cell lines of SW-480 and HCT-116 compared to the inhibitory capacity of CPT-11. Interestingly, FSY04 possessed lower cytotoxicity against normal cell lines of LO2 and 293T in contrast with CPT-11. Moreover, FSY04 is more active than CPT-11 in inducing apoptosis, inhibiting migration, and invasion. In vivo experiments suggested that half of the equivalent of FSY04 inhibited the growth of SW480 in the xenograft tumor model better than one equivalent of CPT-11. Our data demonstrated FSY04 to be a promising agent in CRC therapy.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias Colorretais , Animais , Humanos , Irinotecano/farmacologia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Modelos Animais de Doenças , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos Fitogênicos/uso terapêutico
18.
J Hazard Mater ; 442: 130047, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36194960

RESUMO

In this study, the impact of biochar on the degradation of organophosphate esters (OPEs) during the aerobic composting of sewage sludge was investigated. Three treatments were conducted with different percentages of biochar in the compost, including 5 %, 10 %, and 20 %. The treatment with 10 % of biochar showed the longest thermophilic phase compared to that of 5 % and 20 % of biochar, which greatly promoted the decomposition of organic matter. In addition, the degradation rate of the hard-to-degrade chlorinated-OPEs was significantly increased by 10 % biochar, reaching to 57.2 %. Correspondingly, approximately 43.6 % of the total concentration of OPEs (Σ6OPEs) was eliminated in the presence of 10 % of biochar, which was higher than the treatments with 5 % and 20 % of biochar. Biochar significantly influenced the microbial community structure of compost, but the previously reported organophosphorus-degrading bacteria did not play a major role in the degradation of OPEs. The redox ability of the increased oxygen-containing functional groups such as quinone on the surface of biochar and the biochar-mediated electron transfer ability may play an essential role in the degradation of OPEs during the composting process.


Assuntos
Compostagem , Esgotos/química , Organofosfatos , Oxigênio , Quinonas , Solo/química
19.
Aging (Albany NY) ; 14(17): 7109-7125, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098742

RESUMO

Acute promyelocytic leukemia (APL) is a specific subtype of acute myelogenous leukemia (AML) characterized by the proliferation of abnormal promyelocytes. Realgar, a Chinese medicine containing arsenic, can be taken orally. Traditional Chinese medicine physicians have employed realgar to treat APL for over a thousand years. Therefore, realgar may be a promising candidate for the treatment of APL. Nevertheless, the underlying mechanism behind realgar therapy is largely unclear. The present study aimed to investigate the effect of realgar on cell death in the APL cell line (NB4) in vitro and to elucidate the underlying mechanism. In this study, after APL cells were treated with different concentrations of realgar, the cell survival rate, apoptotic assay, morphological changes, ATP levels and cell cycle arrest were assessed. The expression of Bcl-2, Bax, Cytochrome C (Cyt-C) and apoptosis-inducing factor (AIF) at the mRNA and protein levels were also measured by immunofluorescence, quantitative PCR (qPCR) and Western blotting. We found that realgar could significantly inhibit APL cell proliferation and cell death in a time- and dose-dependent manner. Realgar effectively decreased the ATP levels in APL cells. Realgar also induced APL cell cycle arrest at the S and G2/M phases. Following realgar treatment, the mRNA and protein levels of Bcl-2 were significantly downregulated, whereas the levels of Bax, Cyt-C, and AIF were significantly upregulated. In summary, realgar can induce APL cell death via the Bcl-2/Bax/Cyt-C/AIF signaling pathway, suggesting that realgar may be an effective therapeutic for APL.


Assuntos
Arsênio , Leucemia Promielocítica Aguda , Trifosfato de Adenosina , Apoptose , Fator de Indução de Apoptose/metabolismo , Arsênio/metabolismo , Arsênio/farmacologia , Arsênio/uso terapêutico , Arsenicais , Morte Celular , Linhagem Celular Tumoral , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Medicina Tradicional Chinesa , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Transdução de Sinais , Sulfetos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
20.
Nanomaterials (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957091

RESUMO

The energy crisis and environmental issues are becoming more severe due to the long-term consumption of fossil fuels. Therefore, novel energy-conversion devices with high energy density and environmental friendliness are expected to provide reliable alternatives to traditional fossil-based energy systems. However, because of the inevitable use of costly precious metals as the electrode catalysts for such devices, their popularization is seriously hindered. Transition metal nitrides (TMNs) exhibit similar surface and adsorption properties to noble metals because the atomic distance between metal atoms increases and the d-band center of metal atoms downshifts after nitrogen atoms enter the metal lattice. TMNs have become one of the best electrode materials to replace noble metal-based electrocatalysts in next-generation energy-storage and energy-conversion devices. In this review, the recent developments in the electrocatalytic application of TMNs are covered. First, we discuss the structure and activity origin of TMNs and introduce the common synthesis methods for the preparation of TMNs. Subsequently, we illustrate the applications of mono-metallic TMNs and multi-metallic TMNs in oxygen-reduction reaction, oxygen-evolution reaction, and bifunctional oxygen reduction and evolution reactions. Finally, we summarize the challenges of TMNs encountered at the present stage, and expect their future development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA