Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772948

RESUMO

Microwave impedance microscopy (MIM) is a near-field imaging technique that has been used to visualize the local conductivity of materials with nanoscale resolution across the GHz regime. In recent years, MIM has shown great promise for the investigation of topological states of matter, correlated electronic states, and emergent phenomena in quantum materials. To explore these low-energy phenomena, many of which are only detectable in the milliKelvin regime, we have developed a novel low-temperature MIM incorporated into a dilution refrigerator. This setup, which consists of a tuning-fork-based atomic force microscope with microwave reflectometry capabilities, is capable of reaching temperatures down to 70 mK during imaging and magnetic fields up to 9 T. To test the performance of this microscope, we demonstrate microwave imaging of the conductivity contrast between graphite and silicon dioxide at cryogenic temperatures and discuss the resolution and noise observed in these results. We extend this methodology to visualize edge conduction in Dirac semi-metal cadmium arsenide in the quantum Hall regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA