Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Opt Lett ; 49(14): 4018-4021, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008766

RESUMO

Materials possessing an effective zero refractive index are often associated with Dirac-like cone dispersion at the center of the Brillouin zone (BZ). It has been reported the presence of hidden symmetry-enforced triply degenerate points [nexus points (NP)] away from the Brillouin zone center with the stacked dielectric photonic crystals. The spin-1 Dirac-like dispersion in the xy plane near the nexus point suggests a method for achieving zero refractive index materials. The stacked photonic crystals at the nexus points can be deemed as an effective moving double-zero-index medium (MDZIM) traveling with a speed relative to the laboratory reference. The ability of this moving double-zero-index medium to enable perfect wave tunneling across barriers without reflection has been demonstrated, dependent on the incident waves' specific angular orientations.

2.
Life Sci ; : 122893, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971367

RESUMO

AIMS: Neonatal necrotizing enterocolitis (NEC) is a leading cause of intestine inflammatory disease, and macrophage is significantly activated during NEC development. Posttranslational modifications (PTMs) of proteins, particularly ubiquitination, play critical roles in immune response. This study aimed to investigate the effects of ubiquitin-modified proteins on macrophage activation and NEC, and discover novel NEC-related inflammatory proteins. MATERIALS AND METHODS: Proteomic and ubiquitin proteomic analyses of intestinal macrophages in NEC/healthy mouse pups were carried out. In vitro macrophage inflammation model and in vivo NEC mouse model, as well as clinical human samples were used for further verification the inhibitor of nuclear factor-κB kinase α (IKKα) ubiquitination on NEC development through Western blot, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry. KEY FINDINGS: We report here that IKKα was a new ubiquitin-modified protein during NEC through ubiquitin proteomics, and RING finger protein 31 (RNF31) acted as an E3 ligase to be involved in IKKα degradation. Inhibition of IKKα ubiquitination and degradation with siRNF31 or proteasome inhibitor decreased nuclear factor-κB (NF-κB) activation, thereby decreasing the expression of pro-inflammatory factors and M1 macrophage polarization, resulting in reliving the severity of NEC. SIGNIFICANCE: Our study suggests the activation of RNF31-IKKα-NF-κB axis triggering NEC development and suppressing RNF31-mediated IKKα degradation may be therapeutic strategies to be developed for NEC treatment.

3.
Hypertension ; 81(8): 1822-1836, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853755

RESUMO

BACKGROUND: Hypoxia-induced pulmonary hypertension (HPH) is a T helper 17 cell response-driven disease, and PD-1 (programmed cell death 1)/PD-L1 (programmed cell death-ligand 1) inhibitor-associated pulmonary hypertension has been reported recently. This study is designed to explore whether the PD-1/PD-L1 pathway participates in HPH via regulating endothelial dysfunction and T helper 17 cell response. METHODS: Lung tissue samples were obtained from eligible patients. Western blotting, immunohistochemistry, and immunofluorescence techniques were used to assess protein expression, while immunoprecipitation was utilized to detect ubiquitination. HPH models were established in C57BL/6 WT (wild-type) and PD-1-/- mice, followed by treatment with PD-L1 recombinant protein. Adeno-associated virus vector delivery was used to upregulate PD-L1 in the endothelial cells. Endothelial cell function was assessed through assays for cell angiogenesis and adhesion. RESULTS: Expression of the PD-1/PD-L1 pathway was downregulated in patients with HPH and mouse models, with a notable decrease in PD-L1 expression in endothelial cells compared with the normoxia group. In comparison to WT mice, PD-1-/- mice exhibited a more severe HPH phenotype following exposure to hypoxia, However, administration of PD-L1 recombinant protein and overexpression of PD-L1 in lung endothelial cells mitigated HPH. In vitro, blockade of PD-L1 with a neutralizing antibody promoted endothelial cell angiogenesis, adhesion, and pyroptosis. Mechanistically, hypoxia downregulated PD-L1 protein expression through ubiquitination. Additionally, both in vivo and in vitro, PD-L1 inhibited T helper 17 cell response through the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in HPH. CONCLUSIONS: PD-1/PD-L1 plays a role in ameliorating HPH development by inhibiting T helper 17 cell response through the PI3K/AKT/mTOR pathway and improving endothelial dysfunction, suggesting a novel therapeutic indication for PD-1/PD-L1-based immunomodulatory therapies in the treatment of HPH.


Assuntos
Antígeno B7-H1 , Hipóxia , Receptor de Morte Celular Programada 1 , Remodelação Vascular , Animais , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Humanos , Hipóxia/metabolismo , Remodelação Vascular/fisiologia , Masculino , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Transdução de Sinais/fisiologia , Camundongos Knockout , Feminino , Pulmão/metabolismo , Pulmão/patologia
4.
Phys Rev Lett ; 132(23): 233801, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905648

RESUMO

The Chern number has been widely used to describe the topological properties of periodic structures in momentum space. Here, we introduce a real-space spin Chern number for the optical near fields of finite-sized structures. This new spin Chern number is intrinsically quantized and equal to the structure's Euler characteristic. The relationship is robust against continuous deformation of the structure's geometry and is irrelevant to the specific material constituents or external excitation. Our Letter enriches topological physics by extending the Chern number to real space, opening exciting possibilities for exploring the real-space topological properties of light.

5.
Phys Rev Lett ; 132(22): 223802, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877936

RESUMO

We present the new concept of photonic alloy as a nonperiodic topological material. By mixing nonmagnetized and magnetized rods in a nonperiodic 2D photonic crystal configuration, we realized photonic alloys in the microwave regime. Our experimental findings reveal that the photonic alloy sustains nonreciprocal chiral edge states even at very low concentration of magnetized rods. The nontrivial topology and the associated edge states of these nonperiodic systems can be characterized by the winding of the reflection phase. Our results indicate that the threshold concentrations for the investigated system within the first nontrivial band gap to exhibit topological behavior approach zero in the thermodynamic limit for substitutional alloys, while the threshold remains nonzero for interstitial alloys. At low concentration, the system exhibits an inhomogeneous structure characterized by isolated patches of nonpercolating magnetic domains that are spaced far apart within a topologically trivial photonic crystal. Surprisingly, the system manifests chiral edge states despite a local breakdown of time-reversal symmetry rather than a global one. Photonic alloys represent a new category of disordered topological materials, offering exciting opportunities for exploring topological materials with adjustable gaps.

6.
Phys Rev Lett ; 131(23): 237201, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134766

RESUMO

Lines of exceptional points are robust in the three-dimensional non-Hermitian parameter space without requiring any symmetry. However, when more elaborate exceptional structures are considered, the role of symmetry becomes critical. One such case is the exceptional chain (EC), which is formed by the intersection or osculation of multiple exceptional lines (ELs). In this Letter, we investigate a non-Hermitian classical mechanical system and reveal that a symmetry intrinsic to second-order dynamical equations, in combination with the source-free principle of ELs, guarantees the emergence of ECs. This symmetry can be understood as a non-Hermitian generalized latent symmetry, which is absent in prevailing formalisms rooted in first-order Schrödinger-like equations and has largely been overlooked so far. We experimentally confirm and characterize the ECs using an active mechanical oscillator system. Moreover, by measuring eigenvalue braiding around the ELs meeting at a chain point, we demonstrate the source-free principle of directed ELs that underlies the mechanism for EC formation. Our Letter not only enriches the diversity of non-Hermitian exceptional point configurations, but also highlights the new potential for non-Hermitian physics in second-order dynamical systems.

7.
iScience ; 26(11): 108199, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37965157

RESUMO

Hypoxic pulmonary hypertension (HPH) lacks effective pharmacologic treatments. Microarray-based gene expression indicates the crucial role of Cullin 5 (Cul 5) in HPH. This study showed that Cul 5 was upregulated in HPH patients and a murine model of HPH. In vitro, Cul 5 promoted the angiogenesis and adhesion capacity of human pulmonary artery endothelial cells (PAECs), which could be mitigated by Cul 5 inactivation mediated by pevonedistat or NEDD8 silence. In vivo, silencing of Cul 5 in the endothelium and Cul 5 inactivation by pevonedistat could also alleviate hypoxic vascular remodeling. Mechanistic research showed that Cul 5 participated in HPH pathogenesis via the TRAF6/NF-κB/HIF-1α/VEGF pathway. Inhibition of the TRAF6/NF-κB/HIF-1α/VEGF pathway could reverse Cul 5-induced human PAEC dysfunction. These findings demonstrate that Cul 5 is an important mediator of HPH via the TRAF6/NF-κB/HIF-1α/VEGF pathway firstly, and could be considered as a potential therapeutic target in the clinical treatment of HPH.

8.
Am J Respir Cell Mol Biol ; 69(5): 508-520, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37478333

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury. The binding between N-protein and RAGE was examined via assays for protein-protein interaction. To determine the signaling mechanism in vitro, cells were treated with recombinant N-protein and assayed for the activation of the RAGE/MAPK (mitogen-activated protein kinase)/NF-ĸB pathway. RAGE deficiency mice and antagonist were used to study N-protein-induced acute lung injury in vivo. Binding between N-protein and RAGE was confirmed via flow cytometry-based binding assay, surface plasmon resonance, and ELISA. Pull-down and coimmunoprecipitation assays revealed that N-protein bound RAGE via both N-terminal and C-terminal domains. In vitro, N-protein activated the RAGE-ERK1/2-NF-ĸB signaling pathway and induced a proinflammatory response. RAGE deficiency subdued N-protein-induced proinflammatory signaling and response. In vivo, RAGE was upregulated in the BAL and lung tissue after recombinant N-protein insult. RAGE deficiency and small molecule antagonist partially protected mice from N-protein-induced acute lung injury. Our study demonstrated that RAGE is a receptor for N-protein. RAGE is partially responsible for N-protein-induced acute lung injury and has the potential to become a therapeutic target for treating coronavirus disease.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , NF-kappa B/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , SARS-CoV-2/metabolismo
9.
Light Sci Appl ; 12(1): 165, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402713

RESUMO

Chiral zeroth Landau levels are topologically protected bulk states. In particle physics and condensed matter physics, the chiral zeroth Landau level plays a significant role in breaking chiral symmetry and gives rise to the chiral anomaly. Previous experimental works on such chiral Landau levels are mainly based on three-dimensional Weyl degeneracies coupled with axial magnetic fields. Their realizations using two-dimensional Dirac point systems, being more promising for future applications, were never experimentally realized before. Here we propose an experimental scheme for realizing chiral Landau levels in a two-dimensional photonic system. By introducing an inhomogeneous effective mass through breaking local parity-inversion symmetries, a synthetic in-plane magnetic field is generated and coupled with the Dirac quasi-particles. Consequently, the zeroth-order chiral Landau levels can be induced, and the one-way propagation characteristics are experimentally observed. In addition, the robust transport of the chiral zeroth mode against defects in the system is also experimentally tested. Our system provides a new pathway for the realization of chiral Landau levels in two-dimensional Dirac cone systems, and may potentially be applied in device designs utilizing the chiral response and transport robustness.

10.
Nat Mater ; 22(10): 1203-1209, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37349396

RESUMO

Topological photonics is rapidly expanding. However, discovering three-dimensional topological electromagnetic systems can be more challenging than electronic systems for two reasons. First, the vectorial nature of electromagnetic waves results in complicated band dispersions, and simple tight-binding-type predictions usually fail. Second, topological electromagnetic surface modes inside the light cone have very low quality factors (Q factors). Here, we propose the concept of scalar topological photonics to address these challenges. Our approach is experimentally validated by employing a nested meta-crystal configuration using connected coaxial waveguides. They exhibit scalar-wave-like band dispersions, making the search for photonic topological phases an easier task. Their surface states have skyrmion-like electric field distributions, resulting in a whole, bright surface state band inside the light cone continuum. As such, the topological surface states in our three-dimensional nested crystals can be exposed to air, making such systems well-suited for practical applications.

11.
Front Immunol ; 14: 1139620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114058

RESUMO

Background: During the COVID-19 epidemic, vaccination has become the most safe and effective way to prevent severe illness and death. Inactivated vaccines are the most widely used type of COVID-19 vaccines in the world. In contrast to spike-based mRNA/protein COVID-19 vaccines, inactivated vaccines generate antibodies and T cell responses against both spike and non-spike antigens. However, the knowledge of inactivated vaccines in inducing non-spike-specific T cell response is very limited. Methods: In this study, eighteen healthcare volunteers received a homogenous booster (third) dose of the CoronaVac vaccine at least 6 months after the second dose. CD4+ and CD8+ T cell responses against a peptide pool from wild-type (WT) non-spike proteins and spike peptide pools from WT, Delta, and Omicron SARS-CoV-2 were examined before and 1-2 weeks after the booster dose. Results: The booster dose elevated cytokine response in CD4+ and CD8+ T cells as well as expression of cytotoxic marker CD107a in CD8+ T cells in response to non-spike and spike antigens. The frequencies of cytokine-secreting non-spike-specific CD4+ and CD8+ T cells correlated well with those of spike-specific from WT, Delta, and Omicron. Activation-induced markers (AIM) assay also revealed that booster vaccination elicited non-spike-specific CD4+ and CD8+ T cell responses. In addition, booster vaccination produced similar spike-specific AIM+CD4+ and AIM+CD8+ T cell responses to WT, Delta, and Omicron, indicting strong cross-reactivity of functional cellular response between WT and variants. Furthermore, booster vaccination induced effector memory phenotypes of spike-specific and non-spike-specific CD4+ and CD8+ T cells. Conclusions: These data suggest that the booster dose of inactive vaccines broadens both non-spike-specific and spike-specific T cell responses against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Linfócitos T CD8-Positivos , Células T de Memória , COVID-19/prevenção & controle , SARS-CoV-2 , Citocinas , Vacinas de Produtos Inativados
12.
Hypertension ; 80(5): 1035-1047, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075135

RESUMO

BACKGROUND: It has been shown that glycolytic protein ENO1 (alpha-enolase) contributes to the pathogenesis of pulmonary hypertension through acting smooth muscle cells; however, the roles of ENO1-caused endothelial and mitochondrial dysfunctions in Group 3 pulmonary hypertension remain unexplored. METHODS: PCR array and RNA sequencing were used to screen and decipher the differential gene expression by hypoxia-treated human pulmonary artery endothelial cells. Techniques of small-interfering RNA, specific inhibitor and plasmids carrying gene of ENO1, interventions with specific inhibitor and AAV-ENO1 delivery were employed to explore the role of ENO1 in hypoxic pulmonary hypertension in vitro and in vivo, respectively. Assays for cell proliferation, angiogenesis, and adhesion were employed to analyze cell behaviors, while seahorse analysis was used to measure mitochondrial function of human pulmonary artery endothelial cells. RESULTS: PCR array data showed that ENO1 expression increased in human pulmonary artery endothelial cells exposed to hypoxia, as well as in lung tissues from patients with chronic obstructive lung disease-associated pulmonary hypertension and murine model of hypoxic pulmonary hypertension. Inhibition of ENO1 restored the hypoxia-induced endothelial dysfunction, including excessive proliferation, angiogenesis, and adhesion, while overexpression of ENO1 promotes these disorders of human pulmonary artery endothelial cells. RNA-seq showed that ENO1 targets mitochondrion-related genes and PI3K-Akt signaling pathway, which were validated in vitro and in vivo. Mice treated with ENO1 inhibitor exhibited ameliorated pulmonary hypertension and improved right ventricular failure induced by hypoxia. A reversal effect was observed in mice exposed to hypoxia and inhaled adeno-associated virus overexpressing ENO1. CONCLUSIONS: These results indicate that hypoxic pulmonary hypertension is associated with an increased level of ENO1 and that targeting ENO1 might reduce experimental hypoxic pulmonary hypertension by improving endothelial and mitochondrial dysfunction via PI3K-Akt-mTOR signaling pathway.


Assuntos
Hipertensão Pulmonar , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Pulmonar/metabolismo , Fosfatidilinositol 3-Quinases , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Artéria Pulmonar/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
PLoS One ; 18(1): e0279836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36602964

RESUMO

The principle of minimization of dependency distance (DD) can reduce the working memory burden of language speakers, that is, reduce the cognitive burden during the communication process. This investigation demonstrated the dependency distance (based on the dependency grammar) minimization principle from a diachronic perspective in two text types of magazines and news with inspection indicators of mean dependency distance (MDD) and normalized dependency distance (NDD). This research revealed a fluctuation tendency around a certain axis concerning diachronic dependency distance variation. This research also indicated that news text balances language complexity and communication efficiency better than magazine text.


Assuntos
Idioma , Linguística
14.
Nat Commun ; 13(1): 6120, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253415

RESUMO

Nontrivial band topologies have been discovered in classical systems and hold great potential for device applications. Unlike photons, sound has fundamentally different dynamics and symmetries in fluids and solids, represented as scalar and vector fields, respectively. So far, searches for topological phononic materials have only concerned sound in either fluids or solids alone, overlooking their intricate interactions in "mixtures". Here, we report an approach for topological phononics employing such unique interplay, and demonstrate the realization of type-II nodal rings, elusive in phononics, in a simple three-dimensional phononic crystal. Type-II nodal rings, as line degeneracies in momentum space with exotic properties from strong tilting, are directly observed through ultrasonic near-field scanning. Strongly tilted drumhead surface states, the hallmark phenomena, are also experimentally demonstrated. This phononic approach opens a door to explore topological physics in classical systems, which is easy to implement that can be used for designing high-performance acoustic devices.

15.
Nat Commun ; 13(1): 5916, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207327

RESUMO

The most useful property of topological materials is perhaps the robust transport of topological edge modes, whose existence depends on bulk topological invariants. This means that we need to make volumetric changes to many atoms in the bulk to control the transport properties of the edges in a sample. We suggest here that we can do the reverse in some cases: the properties of the edge can be used to induce chiral transport phenomena in some bulk modes. Specifically, we show that a topologically trivial 2D hexagonal phononic crystal slab (waveguide) bounded by hard-wall boundaries guarantees the existence of bulk modes with chiral anomaly inside a pseudogap due to finite size effect. We experimentally observed robust valley-selected transport, complete valley state conversion, and valley focusing of the chiral anomaly bulk states (CABSs) in such phononic crystal waveguides. The same concept also applies to electromagnetics.

16.
Sci Adv ; 8(41): eabq0910, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240266

RESUMO

The central idea of metamaterials and metaoptics is that, besides their base materials, the geometry of structures offers a broad extra dimension to explore for exotic functionalities. Here, we discover that the topology of structures fundamentally dictates the topological properties of optical fields and offers a new dimension to exploit for optical functionalities that are irrelevant to specific material constituents or structural geometries. We find that the nontrivial topology of metal structures ensures the birth of polarization singularities (PSs) in the near field with rich morphologies and intriguing spatial evolutions including merging, bifurcation, and topological transition. By mapping the PSs to non-Hermitian exceptional points and using homotopy theory, we extract the core invariant that governs the topological classification of the PSs and the conservation law that regulates their spatial evolutions. The results bridge singular optics, topological photonics, and non-Hermitian physics, with potential applications in chiral sensing, chiral quantum optics, and beyond photonics in other wave systems.

17.
J Thorac Dis ; 14(7): 2511-2521, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35928619

RESUMO

Background: There is still no agreement on whether corticosteroids can reduce mortality in patients with acute respiratory distress syndrome (ARDS). The aim of this study was to investigate the efficacy of low-dose corticosteroid administration in patients with ARDS. Methods: A prospective observational study of patients with ARDS in 17 hospitals in China was performed between March 2016 and February 2018. Propensity score matching was performed to adjust for differences in baseline characteristics between different groups. The effects of corticosteroids were assessed by using the Kaplan-Meier method and a multivariate Cox regression. Results: A total of 527 ARDS patients were enrolled in the study. Sixty-five patients (12.3%) were administered low-dose (methylprednisolone ≤1 mg·kg-1·d-1) corticosteroids. The median dose was equivalent to 0.67 (0.57-0.81) mg/kg methylprednisolone for a median duration of 10 days. The control group included 224 patients (42.5%) who had never receive corticosteroids. In the matched sample, the hospital mortality rates in the low-dose (n=40) and control groups (n=80) were 27.5% and 42.5% (P=0.110), respectively. The length of hospital stay was significantly longer in the low-dose corticosteroid group than in the control group (24.0 vs. 17.0, P=0.002), and the multivariate Cox regression analysis suggested that the low-dose group had a significantly lower risk of death than the control group (HR: 0.48; 95% CI: 0.24-0.97; P=0.040). Conclusions: The administration of low-dose corticosteroids may reduce mortality in patients with ARDS.

18.
Phys Rev Lett ; 129(4): 043902, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939009

RESUMO

That disorder can induce nontrivial topology is a surprising discovery in topological physics. As a typical example, Chern topological Anderson insulators (TAIs) have been realized in photonic systems, where the topological phases exist without symmetry protection. In this Letter, by taking transverse magnetic and transverse electric polarizations as pseudospin degrees of freedom, we theoretically propose a scheme to realize disorder-induced symmetry-protected topological phase transitions in two-dimensional photonic crystals with a combined time-reversal, mirror, and duality symmetry T_{f}=TM_{z}D. In particular, we demonstrate that the disorder-induced symmetry-protected topological phase persists even without pseudospin conservation, thereby realizing a photonic Z_{2} TAI, in contrast to a Z-classified quantum spin Hall (QSH) TAI with decoupled spins. By formulating a new scattering approach, we show that the topology of both the QSH and Z_{2} TAIs can be manifested by the accumulated spin rotations of the reflected waves from the photonic crystals. Using a transmission structure, we also illustrate the trivialization of a disordered QSH phase with an even integer topological index caused by spin coupling.

19.
Phys Rev Lett ; 129(4): 043602, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939028

RESUMO

In periodic systems, nodal lines are loops in the three-dimensional momentum space with each point on them representing a band degeneracy. Nodal lines exhibit rich topological features, as they can take various configurations such as rings, links, chains, and knots. These line nodes are generally protected by mirror or PT symmetry and frequently accompanied by drumhead surface states. Here, we propose and demonstrate a novel type of photonic straight nodal lines in a D_{2D} metacrystal, which are protected by an unusual rotoinversion time (roto-PT) symmetry. These nodal lines are located at the central axis and hinges of the Brillouin zone. They appear as quadrupole sources of Berry curvature flux in contrast to the Weyl points, which are monopoles. Interestingly, topological surface states exist at all three cutting surfaces, as guaranteed by π-quantized Zak phases along all three directions. As frequency changes, the surface state equifrequency contours evolve from closed to open and become straight lines at a critical transition frequency, at which diffractionless surface wave propagations are experimentally demonstrated, paving the way toward development of superimaging topological devices.

20.
Phys Rev Lett ; 128(24): 246601, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776454

RESUMO

Nodal lines are symmetry-protected one-dimensional band degeneracies in momentum space, which can appear in numerous topological configurations such as nodal rings, chains, links, and knots. Very recently, non-Abelian topological physics have been proposed in space-time inversion (PT) symmetric systems. One of the most special configurations in such systems is the earring nodal link, composing of a nodal chain linking with an isolated nodal line. Such earring nodal links have not been observed in real systems. We designed phononic crystals with earring nodal links, and experimentally observed two different kinds of earring nodal links by measuring the band structures. We found that the order of the nodal chain and line can be switched after band inversion but their link cannot be severed. Our Letter provides experimental evidence for phenomena unique to non-Abelian band topology and our acoustic system provides a convenient platform for studying the new materials carrying non-Abelian charges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA