Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 17: 563-577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860800

RESUMO

Background: α-Mangostin (MG) showed the potentials in alleviating experimental arthritis, inhibiting inflammatory polarization of macrophages/monocytes, and regulating peroxisome proliferators-activated receptor γ (PPAR-γ) and silent information regulator 1 (SIRT1) signals. The aim of this study was to analyze the correlations among the above-mentioned properties. Methods: Antigen-induced arthritis (AIA) was established in mouse, which was treated with MG in combination with SIRT1/PPAR-γ inhibitors to clarify the role of the two signals in the anti-arthritic actions. Pathological changes were systematically investigated. Phenotypes of cells were investigated by flow cytometry. Expression and co-localization of SIRT1 and PPAR-γ proteins in joint tissues were observed by the immunofluorescence method. Finally, clinical implications from the synchronous up-regulation of SIRT1 and PPAR-γ were validated by experiments in vitro. Results: SIRT1 and PPAR-γ inhibitors (nicotinamide and T0070097) reduced the therapeutic effects of MG on AIA mice, and abrogated MG-induced up-regulation of SIRT1/PPAR-γ and inhibition of M1 polarization in macrophages/monocytes. MG has a good binding affinity to PPAR-γ, and MG promoted the co-expression of SIRT1 and PPAR-γ in joints. Synchronously activating SIRT1 and PPAR-γ was revealed to be necessary by MG to repress inflammatory responses in THP-1 monocytes. Conclusion: MG binds PPAR-γ and excites this signaling to initiate ligand-dependent anti-inflammatory activity. Due to certain unspecified signal transduction crosstalk mechanism, it then promoted SIRT1 expression and further limited inflammatory polarization of macrophages/monocytes in AIA mice.


Assuntos
Artrite Experimental , Monócitos , Animais , Camundongos , Proliferadores de Peroxissomos , PPAR gama , Sirtuína 1 , Macrófagos , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico
2.
Immunopharmacol Immunotoxicol ; 45(1): 16-25, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35850595

RESUMO

BACKGROUND: The first-line anti-rheumatic drug methotrexate (MTX) is used in the combination. Because of the unpredictable adverse reactions, optimization of relevant regimens is necessary and meaningful. This study aimed to study the possible interaction between Securidaca inappendiculate Hassk. Derived xanthones and MTX. METHODS: We established adjuvant-induced arthritis (AIA) model, which was treated with MTX and MTX + xanthone-rich fraction (XRF). The clinical efficacy was evaluated by histopathological examination, and LC-MS was used to monitor the blood concentration of MTX. Western blotting and immunohistochemistry were used to detect protein expression. In vitro, we assessed the activity of related transporters by cellular uptake assay based on HEK-293T cells. RESULTS: Compared with MTX-treated rats, inflammation in the immunized rats in the MTX + XRF group was obvious, indicating that XRF antagonized the anti-rheumatic effect of MTX. Meanwhile, XRF reduced liver and kidney injuries caused by MTX in addition to MTX. Results from immunohistochemical and nappendiculat assays suggested that XRF may reduce uptake of MTX by down-regulating reduced folate carrier 1 (RFC1). CONCLUSION: This study indicated that XRF could reduce the plasma concentration of MTX by inhibiting the expression of RFC1, antagonize the therapeutic effect of MTX on AIA rats, and reduce its oral bioavailability. The combination of S. inappendiculate and MTX should be further optimized to achieve the goal of increasing efficiency and reducing toxicity.


Assuntos
Antirreumáticos , Securidaca , Xantonas , Ratos , Animais , Metotrexato/farmacologia , Securidaca/metabolismo , Proteína Carregadora de Folato Reduzido , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Xantonas/farmacologia
3.
Drug Des Devel Ther ; 16: 509-520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250263

RESUMO

BACKGROUND: Studies have found that α-mangostin (MG) can relieve experimental arthritis by activating cholinergic anti-inflammatory pathway (CAP). It affects the polarization of macrophages and the balance of related immune cell subpopulations, but the specific mechanism is still unclear. It has been found that silent information regulator 1 (SIRT1) is closely related to macrophage activity. The purpose of this study is to explore the mechanism of MG intervening in macrophage polarization during treatment of early adjuvant-induced (AIA) rats through the CAP-SIRT1 pathway. METHODS: We investigated the polarization of M1 macrophages and the differentiation of Th1 in AIA rats by flow cytometry. Activity of acetylcholinesterase (AChE) and the level of nicotinic adenine dinucleotide (NAD+) in serum were also detected, and immunohistochemical was used to detect the levels of α7 nicotinic cholinergic receptor (α7nAChR) and SIRT1. Then in macrophages, the molecular mechanism of MG regulating the abnormal activation of macrophages in rats with early AIA through the CAP-SIRT1 pathway was studied. RESULTS: MG can significantly inhibit the polarization of M1 macrophages and the differentiation of Th1 in AIA rats in the acute phase of inflammation. MG can significantly inhibit the activity of AChE and increase the level of NAD+, thereby further up-regulated the expression levels of α7nAChR and SIRT1. Meanwhile, MG inhibited nuclear factor-κB (NF-κB)-mediated inflammation by activating the CAP-SIRT1 pathway in macrophages. CONCLUSION: In summary, the stimulation of MG induced CAP activation, which up-regulated SIRT1 signal, and thereby inhibited M1 polarization through the NF-κB pathway, and improved the pathological immune environment of early-stage AIA rats.


Assuntos
Artrite Experimental , Sirtuína 1 , Acetilcolinesterase/metabolismo , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Ratos , Sirtuína 1/metabolismo , Xantonas
4.
Neurochem Res ; 47(3): 531-544, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34783974

RESUMO

Rheumatoid arthritis (RA) is one of the most common autoimmune disease and until now, the etiology and pathogenesis of RA is not fully understood, although dysregulation of immune cells is one of the leading cause of RA-related pathological changes. Based on current understanding, the priority of anti-rheumatic treatments is to restore immune homeostasis. There are several anti-rheumatic drugs with immunomodulatory effects available nowadays, but most of them have obvious safety or efficacy shortcomings. Therefore, the development of novel anti-rheumatic drugs is still in urgently needed. Cholinergic anti-inflammatory pathway (CAP) has been identified as an important aspect of the so-called neuro-immune regulation feedback, and the interaction between acetylcholine and alpha 7 nicotinic acetylcholine receptor (α7nAChR) serves as the foundation for this signaling. Consistent to its immunomodulatory functions, α7nAChR is extensively expressed by immune cells. Accordingly, CAP activation greatly affects the differentiation and function of α7nAChR-expressing immune cells. As a result, targeting α7nAChR will bring profound therapeutic impacts on the treatment of inflammatory diseases like RA. RA is widely recognized as a CD4+ T cells-driven disease. As a major component of innate immunity, macrophages also significantly contribute to RA-related immune abnormalities. Theoretically, manipulation of CAP in immune cells is a feasible way to treat RA. In this review, we summarized the roles of different T cells and macrophages subsets in the occurrence and progression of RA, and highlighted the immune consequences of CAP activation in these cells under RA circumstances. The in-depth discussion is supposed to inspire the development of novel cell-specific CAP-targeting anti-rheumatic regimens.


Assuntos
Artrite Reumatoide , Receptor Nicotínico de Acetilcolina alfa7 , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Macrófagos/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
5.
Int Immunopharmacol ; 101(Pt A): 108175, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34689102

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease. Synovial hyperplasia and persistent inflammation serve as its typical pathological manifestations, which ultimately lead to joint destruction and function loss. Both clinical observations and metabolomics studies have revealed the prevalence of metabolic disorders in RA. In inflammatory immune microenvironments, energy metabolism is profoundly changed. Increasingly evidences suggest that this abnormality is involved in the occurrence and development of RA-related inflammation. Unsurprisingly, many energy metabolism sensors have been confirmed with immunoregulatory properties. As a representative, silent information regulator type 1 (Sirt1) controls many aspects of immune cells, such as cell lifespan, polarization, and secretion by functioning as a transcriptional regulator. Because of the profound clinical implication, researches on Sirt1 in the regulation of energy metabolism and immune functions under RA conditions have gradually gained momentum. This signaling balances glycolysis, lipid metabolism and insulin secretion orchestrating with other metabolism sensors, and consequently affects immune milieu through a so-called metabolism-immune feedback mechanism. This article reviews the involvement of Sirt1 in RA by discussing its impacts on energy metabolism and immune functions, and specially highlights the potential of Sirt1-targeting anti-rheumatic regimens. It also provides a theoretical basis for clarifying the mystery about the high incidence of metabolic complications in RA patients and identifying new anti-rheumatic reagents.


Assuntos
Artrite Reumatoide/imunologia , Metabolismo Energético/imunologia , Sirtuína 1/metabolismo , Animais , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sirtuína 1/antagonistas & inibidores , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
6.
Int J Clin Exp Med ; 8(11): 21379-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26885080

RESUMO

Previous studies report controversial role of Hedgehog (HH) signaling in the progression of colon cancer. This study aimed to investigate the expressions of smoothened (SMO) and downstream glioma-associated oncogene homology-1 (GLI1) in colon cancer, colonic adenoma and normal tissues. Colon cancer and normal tissue samples were collected from 49 patients with colon cancer while colonic adenoma tissue samples were obtained from 34 patients with colonic adenoma. Then the expressions of SMO and GLI1 were investigated using immunohistochemistry (IHC). For the detection of SMO and GLI1 expression, IHC staining results indicated that SMO was mainly expressed on the membrane while GLI1 was mainly expressed in the cytoplasm. The positive rates of SMO and GLI1 protein expressions were significantly increased in colon cancer tissue and colonic adenoma tissue when compared with normal colon tissue. In contrast, the significant difference was not found in the positive rates of SMO and GLI1 protein expressions between colon cancer tissue and colonic adenoma tissue. More importantly, it was found that SMO and GLI1 expressions possibly increased gradually from the normal colon to colonic adenoma to the colon cancer. Furthermore, no distinct correlations were detected between the expression levels of SMO and GLI1 and clinicopathological parameters, including age, gender, differentiation and Dukes stage. The present results provided some new information to the possible role of HH signaling in colon cancer progression. SMO and GLI1 maybe suggested asbiomarkers to identify colon cancerous, precancerous and normal tissues as well astherapeutic targets for colon cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA