Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Technol ; 58(26): 11695-11706, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38877970

RESUMO

Aminophenyl sulfone compounds (ASCs) are widely used in various fields, such as the pharmaceutical and textile industries. ASCs and their primary acetylation products are inevitably discharged into the environment. However, the high toxicity of ASCs could be released from the deacetylation of acetylation products. Still, the occurrence and ecological risks of ASCs and their acetylation products remain largely unknown. Here, we integrated all of the existing ASCs based on the core structure, together with their potential acetylation products, to establish a database covering 1105 compounds. By combining the database with R programming, 45 ASCs, sulfonamides, and their acetylation products were identified in the influent and effluent of 19 municipal wastewater treatment plants in 4 cities of China. 13 of them were detected for the first time in the aquatic environment, and 12 acetylation products were newly identified. The cumulative concentrations of 45 compounds in the influent and effluent were in the range of 231-9.96 × 103 and 26-2.70 × 103 ng/L, respectively. The proportion of the unrecognized compounds accounted for 60.6% of the influent and 62.8% of the effluent. Furthermore, nearly half of the ASCs (46.7%), other sulfonamides (49.9%), and their acetylation products (46.2%) were discharged from the effluent, posing a low-to-medium risk to aquatic organisms. The results provide a guideline for future monitoring programs, particularly for sulfadiazine and dronedarone, and emphasize that the ecological risk of ASCs, sulfonamides, and their acetylation products needs to be considered in the aquatic environment.


Assuntos
Sulfonamidas , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Sulfonamidas/análise , Acetilação , Antibacterianos , Eliminação de Resíduos Líquidos , China , Sulfonas , Monitoramento Ambiental
2.
Sci Total Environ ; 938: 173596, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38810736

RESUMO

Although antibiotics are widely detected in river water, their quantitative relationships with influencing factors in rivers remain largely unexplored. Here, 15 widely used antibiotics were comprehensively analyzed in the Dongjiang River of the Pearl River system. The total antibiotic concentration in river water ranged from 13.84 to 475.04 ng/L, with fluoroquinolones increasing from 11 % in the upstream to 38 % in the downstream. The total antibiotic concentration was high downstream and significantly correlated with the spatial distribution of population density, animal production, and land-use type. The total risk quotient of antibiotics for algae was higher than that for crustaceans and fish. Based on the optimized risk quotient method, amoxicillin, ofloxacin, and norfloxacin were identified as priority antibiotics. The key predictors of antibiotic levels were screened through Mantel test, correlation analysis, and multiple regression models. Water physicochemical parameters significantly impacted antibiotics and could be used as easy-to-measure surrogates associated with elevated antibiotics. Cropland negatively affected fluoroquinolones and sulfonamides, whereas urban land exerted positive impacts on fluoroquinolones, ß-lactam, and sulfonamides. In the main stream, population, animal production, urbanization status, and economic development had key effects on the distribution of florfenicol, norfloxacin, ofloxacin, and sulfadiazine.


Assuntos
Antibacterianos , Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Antibacterianos/análise , China , Medição de Risco , Urbanização , Animais , Peixes
3.
ACS Nano ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323841

RESUMO

Persistent organic pollutants (POPs) have been widely suggested as contributors to the aquatic insect biomass decline, and their bioavailability is affected by engineered particles. However, the toxicity effects of emerging ionizable POPs mediated by differentially charged engineered nanoparticles on aquatic insects are unknown. In this study, 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B, an emerging perfluoroalkyl acid alternative) was selected as a model emerging ionizable POP; the effect of differentially charged nanoplastics (NPs, 50 nm, 0.5 g/kg) on F-53B bioaccumulation and gut toxicity to Chironomus kiinensis were investigated through histopathology, biochemical index, and gut microbiota analysis. The results showed that when the dissolved concentration of F-53B remained constant, the presence of NPs enhanced the adverse effects on larval growth, emergence, gut oxidative stress and inflammation induced by F-53B, and the enhancement caused by positively charged NP-associated F-53B was stronger than that caused by the negatively charged one. This was mainly because positively charged NPs, due to their greater adsorption capacity and higher bioavailable fraction of associated F-53B, increased the bioaccumulation of F-53B in larvae more significantly than negatively charged NPs. In addition, positively charged NPs interact more easily with gut biomembranes and microbes with a negative charge, further increasing the probability of F-53B interacting with gut biomembranes and microbiota and thereby aggravating gut damage and key microbial dysbacteriosis related to gut health. These findings demonstrate that the surface charge of NPs can regulate the bioaccumulation and toxicity of ionizable POPs to aquatic insects.

4.
Environ Sci Technol ; 57(29): 10773-10781, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428517

RESUMO

Anaerobic bacteria transform aromatic halides through reductive dehalogenation. This dehalorespiration is catalyzed by the supernucleophilic coenzyme vitamin B12, cob(I)alamin, in reductive dehalogenases. So far, the underlying inner-sphere electron transfer (ET) mechanism has been discussed controversially. In the present study, all 36 chloro-, bromo-, and fluorobenzenes and full-size cobalamin are analyzed at the quantum chemical density functional theory level with respect to a wide range of theoretically possible inner-sphere ET mechanisms. The calculated reaction free energies within the framework of CoI···X (X = F, Cl, and Br) attack rule out most of the inner-sphere pathways. The only route with feasible energetics is a proton-coupled two-ET mechanism that involves a B12 side-chain tyrosine (modeled by phenol) as a proton donor. For 12 chlorobenzenes and 9 bromobenzenes with experimental data from Dehalococcoides mccartyi strain CBDB1, the newly proposed PC-TET mechanism successfully discriminates 16 of 17 active from 4 inactive substrates and correctly predicts the observed regiospecificity to 100%. Moreover, fluorobenzenes are predicted to be recalcitrant in agreement with experimental findings. Conceptually, based on the Bell-Evans-Polanyi principle, the computational approach provides novel mechanistic insights and may serve as a tool for predicting the energetic feasibility of reductive aromatic dehalogenation.


Assuntos
Chloroflexi , Chloroflexi/metabolismo , Fluorbenzenos/metabolismo , Prótons , Vitamina B 12/metabolismo , Biodegradação Ambiental
5.
Phys Chem Chem Phys ; 25(22): 15193-15199, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227386

RESUMO

Microbial reductive dechlorination provides a green and highly desirable approach to address the pollution raised by the substantial legacies of polychlorinated biphenyls (PCBs) in soil, sediment, and underground water. It has been shown that the reaction event is catalyzed by supernucleophilic cob(I)alamin housed in reductive dehalogenases (RDases). However, the mechanism still remains elusive. Herein, we unravel the mechanism via quantum chemical calculations, considering a general model of RDase and the dechlorination regioselectivity of two representative PCB congeners, 234-236-CB and 2345-236-CB. The B12-catalzyed reductive dechlorination of PCBs starts with the formation of a reactant complex, followed by a proton-coupled two-electron transfer (PC-TET) and a subsequent single-electron transfer (SET). The PC-TET yields a cob(III)alamin-featured intermediate, which is quickly reduced by the latter SET fueled by significant energetic benefits (∼100 kcal mol-1). It rationalizes the exclusive detection and characterization of cob(I/II)alamins in RDase-mediated dehalogenation experiments. The determined mechanism successfully reproduces the experimental dechlorination regioselectivity and reactivity, as observed with Dehalococcoides mccartyi strain CG1.

6.
Sci Total Environ ; 890: 164171, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37225097

RESUMO

Aquatic ecosystems are ubiquitously polluted and deteriorated by micro/nanoplastics (MPs/NPs) and their associated contaminants. However, the bioavailability of MPs/NPs and their associated hydrophobic organic contaminants (HOCs) remains largely unknown. This study employs passive dosing systems to study the bioavailability of differently-sized MPs (3 and 20 µm)/NPs (80 nm) and their associated polycyclic aromatic hydrocarbons (PAHs) to Daphnia magna, a model species in aquatic ecosystem. At constant concentrations of freely dissolved PAHs, the presence of MPs/NPs raises the immobilization of D. magna to 71.1-80.0 %, far higher than their counterparts caused by PAHs (24.4 %) or MPs (20.0-24.4 %)/NPs (15.5 %). It demonstrates that the MPs/NPs-associated PAHs are bioavailable, acting as a key contributor (37.1-50.0 %) for the overall immobilization. Interestingly, although the immobilization of D. magna caused by MPs is higher than NPs, the bioavailability of MPs/NPs-associated PAHs declines with plastic size. Such a trend is due to the fact that MPs are actively ingested but hardly egested; while NPs are passively ingested and rapidly egested, leading to a continuous and higher accessibility of NPs-associated PAHs to D. magna. These findings clarify an integrated role of ingestion and egestion in controlling the bioavailability of MPs/NPs and their associated HOCs. Further, this study suggests that MPs/NPs-associated HOCs should be primarily concerned in chemical risk assessment in aquatic ecosystem. Accordingly, both ingestion and egestion of MPs/NPs by aquatic species should be addressed in future studies.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Plásticos , Ecossistema , Daphnia , Microplásticos , Disponibilidade Biológica , Poluentes Químicos da Água/análise , Ingestão de Alimentos
7.
Chemosphere ; 318: 137931, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706813

RESUMO

Perfluoroalkyl acids (PFAAs) are proteinophilic pollutants. We hypothesized that fractionation of PFAAs may occur along a food chain. To testify this hypothesis, we investigated the bioconcentration, bioaccumulation, and fractionation of 11 kinds of PFAAs (C-F = 3-11) along an aquatic food chain consisting of D. magna, zebrafish, and cichlid. The results showed that the proportions of PFNA, PFOA, and all shorter chain PFAAs in the D. magna and fish tissues were lower than the ones in exposure water, opposing to the other longer chain PFAAs. Predation promoted such fractionation differences, and the proportions of PFNA, PFOA, and all shorter chain PFAAs in organisms decreased while those of the other longer chain PFAAs increased along the food chain. The results of isothermal titration calorimetry and molecular docking experiments showed that binding affinities of PFAAs and fish proteins increased with the number of perfluorinated carbons, resulting in a substitution of shorter chain PFAAs by their longer chain analogues. It also triggered the differences in the uptake and elimination of PFFAs and competitive bioaccumulation between longer and shorter chain PFAAs. This study suggests that fractionation should be considered in studying environmental behaviors and evaluating ecological risks of multiple PFAAs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Cadeia Alimentar , Simulação de Acoplamento Molecular , Fluorocarbonos/análise , Ácidos Graxos , Ácidos Alcanossulfônicos/metabolismo , Poluentes Químicos da Água/análise
8.
Water Res ; 225: 119181, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36198210

RESUMO

Chlorination of a typical anticancer drug with annually ascending use and global prevalence (methotrexate, MTX) in water has been studied. In addition to the analysis of kinetics in different water/wastewater matrices, high-resolution product identification and in-depth secondary risk evaluation, which were eagerly urged in the literature, were performed. It was found that the oxidation of MTX by free available chlorine (FAC) followed first-order kinetics with respect to FAC and first-order kinetics with respect to MTX. The pH-dependent rate constants (kapp) ranged from 170.00 M-1 s-1 (pH 5.0) to 2.68 M-1 s-1 (pH 9.0). The moiety-specific kinetic analysis suggested that 6 model substructures of MTX exhibited similar reactivity to the parent compound at pH 7.0. The presence of Br- greatly promoted MTX chlorination at pH 5.0-9.0, which may be ascribed to the formation of bromine with higher reactivity than FAC. Comparatively, coexisting I- or humic acid inhibited the degradation of MTX by FAC. Notably, chlorination effectively abated MTX in different real water matrices. The liquid chromatography-high resolution mass spectrometry analysis of multiple matrix-mediated chlorinated samples indicated the generation of nine transformation products (TPs) of MTX, among which seven were identified during FAC oxidation for the first time. In addition to the reported electrophilic chlorination of MTX (the major and dominant reaction pathway), the initial attacks on the amide and tertiary amine moieties with C-N bond cleavage constitute novel reaction mechanisms. No genotoxicity was observed for MTX or chlorinated solutions thereof, whereas some TPs were estimated to show multi-endpoint aquatic toxicity and higher biodegradation recalcitrance than MTX. The chlorinated mixtures of MTX with or without Br- showed a significant ability to increase the conjugative transfer frequency of plasmid-carried antibiotic resistance genes within bacteria. Overall, this work thoroughly examines the reaction kinetics together with the matrix effects, transformation mechanisms, and secondary environmental risks of MTX chlorination.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Halogenação , Cloro/química , Cinética , Metotrexato/análise , Água/análise , Águas Residuárias/análise , Substâncias Húmicas/análise , Bromo , Poluentes Químicos da Água/química , Halogênios , Aminas , Amidas , Purificação da Água/métodos
9.
Food Biophys ; 17(4): 575-585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645654

RESUMO

Polyglycerol fatty acid esters (PGFEs), a type of nonionic surfactants, have been widely used in food industry. However, the effects of the aliphatic chain lengths in PGFEs and the concentrations of PGFEs on digestive profiles in emulsion-based systems are poorly understood. The present study has investigated the physicochemical stability, lipolysis dynamics and curcumin bioaccessibility in the nanoemulsions stabilized by synthesized PGFEs with different aliphatic chains (C10-C18) at various concentrations using an in vitro gastrointestinal tract (GIT) model. Shorter aliphatic chain or higher concentrations of PGFEs resulted in smaller droplets in the emulsions before and during digestion. PGFEs concentration had different impacts on lipolysis dynamics of nanoemulsions depending on the aliphatic chain lengths of PGFEs. Furthermore, long aliphatic chain of PGFEs contributed to a greater rate and extent of lipolysis, but a lower bioaccessibility of curcumin compared with medium ones, which was attributed to the formation of insoluble calcium soaps induced by calcium ions. These results are expected to facilitate the application of PGFEs for developing optimized nanoemulsions in encapsulating poorly water-soluble nutraceuticals in functional food industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s11483-021-09681-z.

10.
J Hazard Mater ; 436: 129190, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739720

RESUMO

Polychlorinated biphenyls (PCBs) as typical halogenated persistent organic pollutants are widely distributed in natural environments, and can be enriched and magnified in organisms via food webs. It is consequently urgent and necessary to develop techniques to completely remove these persistent organohalides. In this study, we developed a process (Bio-RD-PAOP) by integrating microbial reductive dechlorination (Bio-RD) with subsequent persulfate activation and oxidation process (PAOP) for effective remediation of PCBs. Results showed the synergistic combination of advantages of Bio-RD and PAOP in dechlorination of higher-chlorinated PCBs and of PAOP in degradation/mineralization of lower-chlorinated PCBs, respectively. For the PAOP, both experimental evidences and theoretical calculations suggested that degradation rate and efficiency decreased with the increased PCB chlorine numbers. Relative to the Bio-RD and PAOP, Bio-RD-PAOP had significantly higher PCB removal efficiencies, of which values were PCB congener-specific. For example, removal efficiency of Bio-RD-PAOP in removing PCB88 is 2.50 and 1.86 times of that of Bio-RD and PAOP, respectively. In contrast, the efficiency is 1.66 and 3.35 times of Bio-RD and PAOP, respectively, for PCB180 removal. The PAOP-derived oxidizing species (mainly sulfate free radical) significantly decreased microbial abundance, particularly of the organohalide-respiring Dehalococcoides. Notably, co-existence of other microorganisms alleviated the inhibitive effect of oxidizing species on the Dehalococcoides, possibly due to formation of microbial flocs or biofilm. This study provided a promising strategy for extensive remediation of organohalide-contaminated sites, as well as new insight into impact of PAOP-derived oxidizing species on the organohalide-respiring community.


Assuntos
Bifenilos Policlorados , Biodegradação Ambiental , Cloro/metabolismo , Sedimentos Geológicos , Halogênios , Oxirredução , Bifenilos Policlorados/análise
11.
Water Res ; 220: 118725, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709597

RESUMO

Hexachloro-1,3-butadiene (HCBD) as one of emerging persistent organic pollutants (POPs) poses potential risk to human health and ecosystems. Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation represents a promising strategy to remediate HCBD-contaminated sites. Nonetheless, information on the HCBD-dechlorinating OHRB and their dechlorination pathways remain unknown. In this study, both in vivo and in vitro experiments, as well as quantum chemical calculation, were employed to successfully identify and characterize the reductive dechlorination of HCBD by Dehalococcoides. Results showed that some Dehalococcoides extensively dechlorinated HCBD to (E)-1,2,3-tri-CBD via (E)-1,1,2,3,4-penta-CBD and (Z,E)-1,2,3,4-tetra-CBD in a co-metabolic way. Both qPCR and 16S rRNA gene amplicon sequencing analyses suggested that the HCBD-dechlorinating Dehalococcoides coupled their cell growth with dechlorination of perchloroethene (PCE), rather than HCBD. The in vivo and in vitro ATPase assays indicated ≥78.89% decrease in ATPase activity upon HCBD addition, which suggested HCBD inhibition on ATPase-mediated energy harvest and provided rationality on the Dehalococcoides-mediated co-metabolic dechlorination of HCBD. Interestingly, dehalogenation screening of organohalides with the HCBD-dechlorinating enrichment cultures showed that debromination of bromodichloromethane (BDCM) was active in the in vitro RDase assays but non-active in the in vivo experiments. Further in vitro assays of hydrogenase activity suggested that significant inhibition of BDCM on the hydrogenase activity could block electron derivation from H2 for consequent reduction of organohalides in the in vivo experiments. Therefore, our results provided unprecedented insight into metabolic, co-metabolic and RDase-active-only dehalogenation of varied organohalides by specific OHRB, which could guide future screening of OHRB for remediation of sites contaminated by HCBD and other POPs.


Assuntos
Chloroflexi , Hidrogenase , Adenosina Trifosfatases/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Butadienos , Chloroflexi/genética , Chloroflexi/metabolismo , Dehalococcoides , Ecossistema , Humanos , Hidrogenase/metabolismo , RNA Ribossômico 16S/genética
12.
J Hazard Mater ; 424(Pt D): 127673, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34776298

RESUMO

Microbial reductive dechlorination provides a promising approach for remediating sites contaminated with polychlorinated dibenzo-p-dioxins (PCDDs). Nonetheless, the overall dechlorination pathways and features remain elusive. Herein, we address these issues by quantum chemical calculations, considering the calibrations of reductive dechlorination of 15 PCDDs mediated by three Dehalococcoides strains. Chlorine substituents with lower electron density are prone to be microbially abstracted, which differentiates 72 microbe-active PCDDs from 3 nonactive analogues with a success rate of 100%. For all 256 transformation routes of 75 PCDDs, electron density differences of chlorines pinpoint 105 viable and 125 unviable pathways, corresponding a success rate of 90%. The feasibility of 26 reductive dechlorination pathways are uncertain because of the limited available experimental data. 98% (251/256) of microbial chlorine abstraction follows an order of ClO,Cl>ClCl,Cl>ClH,O>ClH,Cl>ClH,H=0. PCDDs solely containing chlorines at C1, C4, C6, and/or C9 can be completely dechlorinated to non-chlorinated dioxin; while PCDDs housing chlorines at C2, C3, C7, and/or C8 can be dechlorinated to 2-MCDD or 2,7/8-DCDD as final products. These findings also support reductive dechlorination of PCDDs in mixed cultures and sediments (> 98% and 83%). These findings would promote the application of dechlorinating bacteria in targeted remediation and facilitate the respective studies on other POPs.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Cloro , Elétrons , Halogenação
13.
Phys Chem Chem Phys ; 23(48): 27520-27524, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34874373

RESUMO

Anaerobic microbial B12-dependent reductive dehalogenation may pave a way to remediate soil, sediment, and underground water contaminated with halogenated olefins. The chemical reaction is initiated by electron transfer (ET) from supernucleophilic cob(I)alamin (B12s). However, the inherent mechanism as outer-sphere or inner-sphere route is still under debate. To clarify the possibility of an outer-sphere pathway, we calculated free energy barriers of the initial steps of all outer-sphere ET routes by Marcus theory employing density functional theory (DFT). For 18 fluorinated, chlorinated, and brominated ethenes as representative olefins, 164 of 165 reactions with free energy barriers larger than 20 kcal mol-1 are not feasible under physiological dehalogenase conditions. Moreover, electronic structure analysis of perbromoethene with an outer-sphere free energy barrier of 18.2 kcal mol-1 reveals no ET initiation down to Co⋯Br and Co⋯C distances of 3.15 Å. The results demonstrate that the B12-catalyzed reductive dechlorination of olefins in microbes should proceed through an inner-sphere ET pathway.


Assuntos
Alcenos/metabolismo , Vitamina B 12/metabolismo , Alcenos/química , Catálise , Teoria da Densidade Funcional , Transporte de Elétrons , Halogenação , Conformação Molecular , Vitamina B 12/química
14.
Environ Sci Technol ; 54(24): 15751-15758, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237747

RESUMO

Several anaerobic bacteria can couple the reduction of aromatic halides to energy conservation. This organohalide respiration is catalyzed by enzymes containing cob(I)alamin, an activated supernucleophilic form of the coenzyme vitamin B12. However, the mechanism underlying the electron transfer (inner-sphere vs outer-sphere ET) still remains elusive. To clarify this issue, we selected 36 fluoro-, chloro-, and bromobenzenes as representative substrates and calculated their free-energy barriers at the quantum chemical density functional theory level, considering a wide range of theoretically possible outer-sphere ET mechanisms. Across all 336 reaction routes addressed, 334 routes involve free-energy barriers larger than 20 kcal/mol. For two reaction routes with highly brominated benzenes, free-energy barriers below 20 kcal/mol imply abiotic reduction as observed in experiments. Thus, microbial B12-dependent aromatic reductive dehalogenation does not proceed through an outer-sphere ET mechanism. Instead, the present study strongly suggests that microbe-catalyzed reductive dehalogenation of aromatic halides is governed by inner-sphere ET.


Assuntos
Dehalococcoides , Elétrons , Benzeno , Bromobenzenos , Transporte de Elétrons
15.
J Hazard Mater ; 368: 849-861, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772625

RESUMO

Chiral organohalides including dichlorodiphenyltrichloroethane (DDT), Hexabromocyclododecane (HBCD) and polychlorinated biphenyls (PCBs) raise a significant concern in the environmental occurrence, fate and ecotoxicology due to their enantioselective biological effects. This review provides a state-of-the-art overview on enantioselective microbial transformation of the chiral organohalides. We firstly summarized worldwide field assessments of chiral organohalides in a variety of environmental matrices, which suggested the pivotal role of microorganisms in enantioselective transformation of chiral organohalides. Then, laboratory studies provided experimental evidences to further link enantioselective attenuation of chiral organohalides to specific functional microorganisms and enzymes, revealing mechanistic insights into the enantioselective microbial transformation processes. Particularly, a few amino acid residues in the functional enzymes could play a key role in mediating the enantioselectivity at the molecular level. Finally, major challenges and further developments toward an in-depth understanding of the enantioselective microbial transformation of chiral organohalides are identified and discussed.


Assuntos
Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/metabolismo , Biodegradação Ambiental , Estereoisomerismo
16.
Environ Sci Technol ; 52(4): 1834-1843, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29283566

RESUMO

The bacterium Dehalococcoides, strain CBDB1, transforms aromatic halides through reductive dehalogenation. So far, however, the structures of its vitamin B12-containing dehalogenases are unknown, hampering clarification of the catalytic mechanism and substrate specificity as basis for targeted remediation strategies. This study employs a quantum chemical donor-acceptor approach for the Co(I)-substrate electron transfer. Computational characterization of the substrate electron affinity at carbon-halogen bonds enables discriminating aromatic halides ready for dehalogenation by strain CBDB1 (active substrates) from nondehalogenated (inactive) counterparts with 92% accuracy, covering 86 of 93 bromobenzenes, chlorobenzenes, chlorophenols, chloroanilines, polychlorinated biphenyls, and dibenzo-p-dioxins. Moreover, experimental regioselectivity is predicted with 78% accuracy by a site-specific parameter encoding the overlap potential between the Co(I) HOMO (highest occupied molecular orbital) and the lowest-energy unoccupied sigma-symmetry substrate MO (σ*), and the observed dehalogenation pathways are rationalized with a success rate of 81%. Molecular orbital analysis reveals that the most reactive unoccupied sigma-symmetry orbital of carbon-attached halogen X (σC-X*) mediates its reductive cleavage. The discussion includes predictions for untested substrates, thus providing opportunities for targeted experimental investigations. Overall, the presently introduced orbital interaction model supports the view that with bacterial strain CBDB1, an inner-sphere electron transfer from the supernucleophile B12 Co(I) to the halogen substituent of the aromatic halide is likely to represent the rate-determining step of the reductive dehalogenation.


Assuntos
Chloroflexi , Vitamina B 12 , Clorobenzenos , Halogenação , Vitaminas
17.
Am J Dent ; 30(2): 89-95, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29178770

RESUMO

PURPOSE: To investigate whether prophylactic antibiotics are beneficial on patients undergoing routine dental implant placement procedures and to investigate which administration regimen is the most effective. METHODS: The primary outcome was implant failure; the secondary outcome was postoperative infection. In the fixed-effects model, the Mantel-Haenszel method was used to calculate pooled relative risks (RRs) at 95% confidence intervals (CIs). To determine the outcomes, the quality of available evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). RESULTS: Prophylactic antibiotics significantly decreased the incidence of implant failure (RR, 0.29; 95% CI, 0.15-0.55; P= 0.0002; I2= 0%) but did not decrease infection. There was no statistically significant difference between single preoperative antibiotics (SPA) and preoperative and postoperative antibiotics (PPA) while treating patients with dental implant failure (RR, 1.07; 95% CI, 0.31-3.62; P= 0.92). No statistically significant difference was observed between SPA and PPA when prescribed to treat infection postoperatively (RR, 1.05; 95% CI, 0.29-3.85; P= 0.94; I2= 0%). CLINICAL SIGNIFICANCE: The administration of prophylactic antibiotics significantly reduced the failure of dental implants under ordinary conditions. Furthermore, single preoperative antibiotics and preoperative and postoperative antibiotics had similar effects on dental implant failures and infections.


Assuntos
Antibioticoprofilaxia , Implantação Dentária Endóssea , Falha de Restauração Dentária , Infecção da Ferida Cirúrgica/prevenção & controle , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Environ Sci Technol ; 51(7): 3714-3724, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28233989

RESUMO

Dehalococcoides mccartyi strain CBDB1 and Dehalobacter strain 14DCB1 are organohalide-respiring microbes of the phyla Chloroflexi and Firmicutes, respectively. Here, we report the transformation of chloroanilines by these two bacterial strains via dissimilar dehalogenation pathways and discuss the underlying mechanism with quantum chemically calculated net atomic charges of the substrate Cl, H, and C atoms. Strain CBDB1 preferentially removed Cl doubly flanked by two Cl or by one Cl and NH2, whereas strain 14DCB1 preferentially dechlorinated Cl that has an ortho H. For the CBDB1-mediated dechlorination, comparative analysis with Hirshfeld charges shows that the least-negative Cl discriminates active from nonactive substrates in 14 out of 15 cases and may represent the preferred site of primary attack through cob(I)alamin. For the latter trend, three of seven active substrates provide strong evidence, with partial support from three of the remaining four substrates. Regarding strain 14DCB1, the most positive carbon-attached H atom discriminates active from nonactive chloroanilines in again 14 out of 15 cases. Here, regioselectivity is governed for 10 of the 11 active substrates by the most positive H attached to the highest-charge (most positive or least negative) aromatic C carrying the Cl to be removed. These findings suggest the aromatic ring H as primary site of attack through the supernucleophile Co(I), converting an initial H bond to a full electron transfer as start of the reductive dehalogenation. For both mechanisms, one- and two-electron transfer to Cl (strain CBDB1) or H (strain 14DCB1) are compatible with the presently available data. Computational chemistry research into reaction intermediates and pathways may further aid in understanding the bacterial reductive dehalogenation at the molecular level.


Assuntos
Chloroflexi/metabolismo , Halogenação , Estrutura Molecular , Peptococcaceae
19.
Chemosphere ; 173: 520-528, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28131922

RESUMO

Conventional synthetic polymers typically are highly resistant to microbial degradation, which is beneficial for their intended purpose but highly detrimental when such polymers get lost into the environment. Polystyrene is one of the most widespread of such polymers, but knowledge about its biological degradability is scarce. In this study, we investigated the ability of the polymer-degrading brown-rot fungus Gloeophyllum trabeum to attack polystyrene via Fenton chemistry driven by the redox-cycling of quinones. Indications of superficial oxidation were observed, but the overall effects on the polymer were weak. To assess factors constraining biodegradation of polystyrene, the small water-soluble model compounds ethylbenzene and isopropylbenzene (cumene) were also subjected to biodegradation by G. trabeum. Likewise, ethylbenzene sulfonate, cumene sulfonate and the dimer 1,3-diphenylbutane sulfonate were used as model compounds for comparison with polystyrene sulfonate, which G. trabeum can substantially depolymerise. All model compounds but cumene were degraded by G. trabeum and yielded a large variety of oxidised metabolites, suggesting that both the very poor bioavailability of polystyrene and its inert basic structure play important roles constraining biodegradability via biologically driven Fenton chemistry.


Assuntos
Basidiomycota/metabolismo , Peróxido de Hidrogênio , Ferro , Poliestirenos/química , Poliestirenos/metabolismo , Basidiomycota/crescimento & desenvolvimento , Biodegradação Ambiental , Oxirredução , Polimerização
20.
Sci Total Environ ; 523: 64-73, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25862992

RESUMO

We applied a mixing model based on stable isotopic δ(13)C, δ(15)N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two (210)Pb and (137)Cs dated sediment cores. The results showed that during the past 50years, average contributions of soil and fertilizer, submerged macrophytes, N2-fixing phytoplankton, and non-N2-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N2-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N2-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment.


Assuntos
Mudança Climática , Monitoramento Ambiental , Sedimentos Geológicos/química , Nitrogênio/análise , Poluentes Químicos da Água/análise , Fertilizantes , Lagos/química , Fósforo/análise , Fitoplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA