Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780008

RESUMO

AIMS: Nerve growth factor (NGF) loss is a potential factor for the degeneration of basal forebrain cholinergic neurons (BFCNs) in Alzheimer's disease (AD), and Rab5a is a key regulatory molecule of NGF signaling transduction. Here, we investigated the changes of Rab5a in 5 × FAD mice and further explored the mechanism of Electroacupuncture (EA) treatment in improving cognition in the early stage of AD. METHODS: The total Rab5a and Rab5a-GTP in 5-month-old 5 × FAD mice and wild-type mice were detected using WB and IP technologies. 5 × FAD mice were treated with EA at the Bai hui (DU20) and Shen ting (DU24) acupoints for 4 weeks and CRE/LOXP technology was used to confirm the role of Rab5a in AD mediated by EA stimulation. The Novel Object Recognition and Morris water maze tests were used to evaluate the cognitive function of 5 × FAD mice. The Nissl, immunohistochemistry, and Thioflavin S staining were used to observe pathological morphological changes in the basal forebrain circuit. The Golgi staining was used to investigate the synaptic plasticity of the basal forebrain circuit and WB technology was used to detect the expression levels of cholinergic-related and NGF signal-related proteins. RESULTS: The total Rab5a was unaltered, but Rab5a-GTP increased and the rab5a-positive early endosomes appeared enlarged in the hippocampus of 5 × FAD mice. Notably, EA reduced Rab5a-GTP in the hippocampus in the early stage of 5 × FAD mice. EA could improve object recognition memory and spatial learning memory by reducing Rab5a activity in the early stage of 5 × FAD mice. Moreover, EA could reduce Rab5a activity to increase NGF transduction and increase the levels of phosphorylated TrkA, AKT, and ERK in the basal forebrain and hippocampus, and increase the expression of cholinergic-related proteins, such as ChAT, vAchT, ChT1, m1AchR, and m2AchR in the basal forebrain and ChAT, m1AchR, and m2AchR in the hippocampus, improving synaptic plasticity in the basal forebrain hippocampal circuit in the early stage of 5 × FAD mice. CONCLUSIONS: Rab5a hyperactivation is an early pathological manifestation of 5 × FAD mice. EA could suppress Rab5a-GTP to promote the transduction of NGF signaling, and enhance the synaptic plasticity of the basal forebrain hippocampal circuit improving cognitive impairment in the early stage of 5 × FAD mice.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Camundongos Transgênicos , Fator de Crescimento Neural , Proteínas rab5 de Ligação ao GTP , Animais , Proteínas rab5 de Ligação ao GTP/metabolismo , Fator de Crescimento Neural/metabolismo , Camundongos , Eletroacupuntura/métodos , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Transdução de Sinais/fisiologia , Masculino , Memória/fisiologia , Aprendizagem/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia
2.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675537

RESUMO

Rapid detection of heparin-binding protein (HBP) is essential for timely intervention in sepsis cases. Current detection techniques are usually antibody-based immunological methods, which have certain problems, such as complexity and slow detection, and fall short in meeting the urgency of clinical needs. The application of an aptamer can address these concerns well. In this study, HBP-specific DNA aptamers were screened first. Among which, Apt-01, Apt-02, and Apt-13 had a high affinity for HBP, exhibiting impressive KD values of 3.42, 1.44, and 1.04 nmol/L, respectively. Then, the aptamer of HBP and its partially complementary primer probe were combined to form double-stranded DNA (dsDNA) and synthesize a circular DNA template. The template is complementary to the primer probe, but due to the presence of dsDNA, ExoIII cleaves C2-13 as an RCA primer probe, rendering the template unable to recognize the primer probe and preventing the RCA reaction from proceeding. When the target is present, it competes with the adapter for recognition and releases C2-13, exposing its 3' end. After initiating the RCA at room temperature and reacting with SYBR GreenII at 37 °C for 20 min, fluorescence changes can be observed and quantitatively analyzed at a 530 nm wavelength, achieving quantitative biological analysis. Apt-01 was used to develop a fluorescent biosensor for HBP detection, which exhibited a good linear range (0.01 nmol/L to 10 nmol/L) and detection limit (0.0056 nmol/L). This advancement holds the potential to lay a solid groundwork for pioneering sensitive and specific methods for HBP detection and to significantly enhance the diagnostic processes for sepsis.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Proteínas Sanguíneas , Humanos , Peptídeos Catiônicos Antimicrobianos/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Proteínas Sanguíneas/química , DNA/química , Limite de Detecção
3.
Anal Chem ; 96(16): 6282-6291, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38595038

RESUMO

Respiratory tract infections (RTIs) pose a grave threat to human health, with bacterial pathogens being the primary culprits behind severe illness and mortality. In response to the pressing issue, we developed a centrifugal microfluidic chip integrated with a recombinase-aided amplification (RAA)-clustered regularly interspaced short palindromic repeats (CRISPR) system to achieve rapid detection of respiratory pathogens. The limitations of conventional two-step CRISPR-mediated systems were effectively addressed by employing the all-in-one RAA-CRISPR detection method, thereby enhancing the accuracy and sensitivity of bacterial detection. Moreover, the integration of a centrifugal microfluidic chip led to reduced sample consumption and significantly improved the detection throughput, enabling the simultaneous detection of multiple respiratory pathogens. Furthermore, the incorporation of Chelex-100 in the sample pretreatment enabled a sample-to-answer capability. This pivotal addition facilitated the deployment of the system in real clinical sample testing, enabling the accurate detection of 12 common respiratory bacteria within a set of 60 clinical samples. The system offers rapid and reliable results that are crucial for clinical diagnosis, enabling healthcare professionals to administer timely and accurate treatment interventions to patients.


Assuntos
Infecções Respiratórias , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas de Amplificação de Ácido Nucleico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Bactérias/isolamento & purificação , Bactérias/genética , Recombinases/metabolismo , Automação , Infecções Bacterianas/diagnóstico
4.
Angew Chem Int Ed Engl ; 63(19): e202400797, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38477225

RESUMO

Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly-fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer-organic and inner-inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB- anions tend to integrate into lithium ion solvation structure to form a favorable fast-ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm-2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.

5.
J Alzheimers Dis ; 97(4): 1589-1620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306045

RESUMO

Background: Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset. Identifying candidate predictors to forecast AD dementia risk before disease onset is crucial for early diagnosis and treatment. Objective: We aimed to assess the predictive ability of blood neurofilament light (NfL) chain in anticipating cognitive decline in the AD continuum. Methods: We systematically searched PubMed, Web of Science, and Embase from inception until April 7, 2023. Longitudinal observational studies examining the association between baseline blood NfL and cognitive decline or clinical disease conversion were included based on inclusion/exclusion criteria. The final effect size was represented by adjusted hazard ratios (HR) or standardized beta (s.ß) coefficients with a 95% confidence interval (CI). Results: A total of 2,862 articles were identified, and 26 studies were included in this meta-analysis. The results indicated that baseline blood NfL could predict cognitive decline, with MMSE [s.ß= -0.17, 95% CI (-0.26, -0.07)]; PACC [s.ß= -0.09, 95% CI (-0.16, -0.03)]; ADAS-cog [s.ß= 0.21, 95% CI (0.13, 0.29)]; CDR-SOB [s.ß= 0.27, 95% CI (0.03, 0.50)]; Global cognitive composite [s.ß= -0.05, 95% CI (-0.08, -0.01)]; Memory subdomain [s.ß= -0.06, 95% CI (-0.09, -0.03)]; Language subdomain [s.ß= -0.07, 95% CI (-0.10, -0.05)]; Executive function subdomain [s.ß= -0.02, 95% CI (-0.03, -0.01)]; Visuospatial subdomain [s.ß= -0.06, 95% CI (-0.08, -0.04)]. Additionally, baseline blood NfL could predict disease progression (conversion from CU/SCD/MCI to MCI/AD) in the AD continuum [Adjust HR = 1.32, 95% CI (1.12, 1.56)]. Conclusions: Baseline blood NfL demonstrated predictive capabilities for global cognition and its memory, language, executive function, visuospatial subdomains decline in the AD continuum. Moreover, it exhibited the potential to predict disease progression in non-AD dementia participants.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/tratamento farmacológico , Filamentos Intermediários , Biomarcadores , Proteínas de Neurofilamentos , Progressão da Doença , Peptídeos beta-Amiloides
6.
Food Chem ; 443: 138507, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277932

RESUMO

Rapid, accurate, and sensitive analytical methods for the detection of food fraud are now an urgent requirement in the global food industry to ensure food quality. In response to this demand, a centrifugal integrated purification-CRISPR array for meat adulteration (CIPAM) was established. In detail, CIPAM system combines microneedles for DNA extraction and RAA-CRISPR/Cas12a integrated into a centrifugal microfluidic chip for the detection of meat adulteration. The RAA-CRISPR/Cas12a reaction reagents were pre-embedded into the different reaction chambers on the microfluidic chip to achieve the streamline of operations, markedly simplifying the detection process. The whole reaction was completed within 30 min with a detection limit of 0.1 % (w/w) in pig, chicken, duck, and lamb products. Referring to the results of the standard method, CIPAM system achieved 100 % accuracy. The automatic multiplex detection process implemented in the developed CIPAM system met the needs of food regulatory authorities.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Carne , Animais , Ovinos , Suínos/genética , Carne/análise , Qualidade dos Alimentos , Técnicas de Amplificação de Ácido Nucleico/métodos
7.
Angew Chem Int Ed Engl ; 63(5): e202315710, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078788

RESUMO

High energy density lithium-ion batteries (LIBs) adopting high-nickel layered oxide cathodes and silicon-based composite anodes always suffer from unsatisfied cycle life and poor safety performance, especially at elevated temperatures. Electrode /electrolyte interphase regulation by functional additives is one of the most economic and efficacious strategies to overcome this shortcoming. Herein, cyano-groups (-CN) are introduced into lithium fluorinated phosphate to synthesize a novel multifunctional additive of lithium tetrafluoro (1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) phosphate (LiTFTCP), which endows high nickel LiNi0.8 Co0.1 Mn0.1 O2 /SiOx -graphite composite full cell with an ultrahigh cycle life and superior safety characteristics, by adding only 0.5 wt % LiTFTCP into a LiPF6 -carbonate baseline electrolyte. It is revealed that LiTFTCP additive effectively suppresses the HF generation and facilitates the formation of a robust and heat-resistant cyano-enriched CEI layer as well as a stable LiF-enriched SEI layer. The favorable SEI/CEI layers greatly lessen the electrode degradation, electrolyte consumption, thermal-induced gassing and total heat-releasing. This work illuminates the importance of additive molecular engineering and interphase regulation in simultaneously promoting the cycling and thermal safety of LIBs with high-nickel NCMxyz cathode and silicon-based composite anode.

8.
Adv Sci (Weinh) ; 11(7): e2305753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044323

RESUMO

High nickel (Ni ≥ 80%) lithium-ion batteries (LIBs) with high specific energy are one of the most important technical routes to resolve the growing endurance anxieties. However, because of their extremely aggressive chemistries, high-Ni (Ni ≥ 80%) LIBs suffer from poor cycle life and safety performance, which hinder their large-scale commercial applications. Among varied strategies, electrolyte engineering is very powerful to simultaneously enhance the cycle life and safety of high-Ni (Ni ≥ 80%) LIBs. In this review, the pivotal challenges faced by high-Ni oxide cathodes and conventional LiPF6 -carbonate-based electrolytes are comprehensively summarized. Then, the functional additives design guidelines for LiPF6 -carbonate -based electrolytes and the design principles of high voltage resistance/high safety novel electrolytes are systematically elaborated to resolve these pivotal challenges. Moreover, the proposed thermal runaway mechanisms of high-Ni (Ni ≥ 80%) LIBs are also reviewed to provide useful perspectives for the design of high-safety electrolytes. Finally, the potential research directions of electrolyte engineering toward high-performance high-Ni (Ni ≥ 80%) LIBs are provided. This review will have an important impact on electrolyte innovation as well as the commercial evolution of high-Ni (Ni ≥ 80%) LIBs, and also will be significant to breakthrough the energy density ceiling of LIBs.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38149481

RESUMO

Polymer electrolytes (PEs) with excellent flexibility and superior compatibility toward lithium (Li) metal anodes have been deemed as one of the most promising alternatives to liquid electrolytes. However, conventional lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based dual-ion PEs suffer from a low Li ion transference number and notorious Li dendrite growth. Here, a single-ion conducting polyborate salt without any fluorinated groups, polymeric lithium dihydroxyterephthalic acid borate (PLDPB), is presented for addressing the issues of Li metal batteries. Owing to a nearly immovable bulky anion and the presence of a rigid benzene structure, the PLDPB@poly(ethylene oxide) (PEO) PE exhibits an ultrahigh Li ion transference number (0.94) and excellent mechanical strength, which could significantly restrict the growth of Li dendrites. Postmortem analysis reveals that a fluorine-free solid electrolyte interphase (SEI) enriched with B-O and benzene-containing species is formed on the surface of the Li metal anode, thereby facilitating elimination of excessive parasitic reactions and simultaneously suppressing the formation of Li dendrites. Consequently, the LiFePO4/Li cells with PLDPB@PEO PEs show an improved long-term cycling performance and high capacity retention (90.0%) and Coulombic efficiency (99.9%) after 500 cycles. This work may inspire new ideas to boost the development of single-ion conducting salts for dendrite-free Li metal batteries.

10.
Angew Chem Int Ed Engl ; 62(34): e202302664, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37349889

RESUMO

Lithium difluoro(oxalato) borate (LiDFOB) has been widely investigated in lithium-ion batteries (LIBs) owing to its advantageous thermal stability and excellent aluminum passivation property. However, LiDFOB tends to suffer from severe decomposition and generate a lot of gas species (e.g., CO2 ). Herein, a novel cyano-functionalized lithium borate salt, namely lithium difluoro(1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) borate (LiDFTCB), is innovatively synthesized as a highly oxidative-resistant salt to alleviate above dilemma. It is revealed that the LiDFTCB-based electrolyte enables LiCoO2 /graphite cells with superior capacity retention at both room and elevated temperatures (e.g., 80 % after 600 cycles) with barely any CO2 gas evolution. Systematic studies reveal that LiDFTCB tends to form thin and robust interfacial layers at both electrodes. This work emphasizes the crucial role of cyano-functionalized anions in improving cycle lifespan and safety of practical LIBs.

11.
J Thorac Dis ; 15(4): 1892-1900, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37197527

RESUMO

Background: Programmed cell death-ligand 1 (PD-L1) expression and other biomarkers are not completely reliable predictors of the response to checkpoint inhibitors in patients with advanced non-small cell lung cancer (NSCLC). We investigated the value of peripheral serological inflammatory indicators and their combination in predicting the prognosis of patients with advanced NSCLC treated with checkpoint inhibitors. Methods: This study retrospectively analyzed 116 NSCLC patients treated with anti-programmed cell death protein 1 (PD-1)/PD-L1 monoclonal antibodies. Clinical data of the patients were collected before treatment. X-tile plots determined the optimal cut-point for C-reactive protein (CRP) and lactate dehydrogenase (LDH). A survival analysis was performed using the Kaplan-Meier method. Multi-factor Cox regression analysis was used to evaluate the statistically significant factors identified in the univariate analysis. Results: The X-tile plots show the cut-points of CRP and LDH were 8 mg/L and 312 U/L, respectively. Univariate analyses showed high baseline serum LDH and low CRP levels were associated with adverse progression-free survival (PFS). Multivariate analyses indicated that CRP (HR, 0.214, 95% CI: 0.053-0.857, P=0.029) could be a predictive indicator for PFS. In addition, we evaluated the combination of CRP and LDH, and univariate analyses showed that patients with high CRP and low LDH exhibited significantly better PFS than those in the other groups. Conclusions: Baseline levels of serum CRP and LDH have the potential to become a convenient clinical tool to predict response to immunotherapy in advanced non-small cell lung cancer.

12.
Adv Mater ; 35(25): e2301312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36999377

RESUMO

In lithium-metal batteries (LMBs), the compatibility of Li anode and conventional lithium hexafluorophosphate-(LiPF6 ) carbonate electrolyte is poor owing to the severe parasitic reactions. Herein, to resolve this issue, a delicately designed additive of potassium perfluoropinacolatoborate (KFPB) is unprecedentedly synthesized. On the one hand, KFPB additive can regulate the solvation structure of the carbonate electrolyte, promoting the formation of Li+ FPB- and K+ PF6 - ion pairs with lower lowest unoccupied molecular orbital (LUMO) energy levels. On the other hand, FPB- anion possesses strong adsorption ability on Li anode. Thus, anions can preferentially adsorb and decompose on the Li-anode surface to form a conductive and robust solid-electrolyte interphase (SEI) layer. Only with a trace amount of KFPB additive (0.03 m) in the carbonate electrolyte, Li dendrites' growth can be totally suppressed, and Li||Cu and Li||Li half cells exhibit excellent Li-plating/stripping stability upon cycling. Encouragingly, KFPB-assisted carbonate electrolyte enables high areal capacity LiCoO2 ||Li, LiNi0.8 Co0.1 Mn0.1 O2 (NCM811)||Li, and LiNi0.8 Co0.05 Al0.15 O2 (NCA)||Li LMBs with superior cycling stability, showing its excellent universality. This work reveals the importance of designing novel additives to regulate the solvation structure of carbonate electrolytes in improving its interface compatibility with the Li anode.

13.
Materials (Basel) ; 16(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36676348

RESUMO

To investigate the failure effects of critical fissures in rock specimens subjected to plane strain compression (PSC), five types of internal fissures in rock specimens were designed and twelve PSC tests were conducted for two lithologies based on the discrete element method (DEM). The results were analyzed in terms of the fracture mode, data characteristics, and crack evolution. The results indicated the following. (1) The rock samples with a critical fissure under PSC showed a weak face shear fracture mode, which was influenced by lithology, fissure angle, and fissure surface direction. (2) There were four critical expansion points (CEPs) of axial stress of the rocks under PSC, which were the stage signs of rock materials from local damage to complete fracture. The rock-bearing capacity index (RockBCI) was further proposed. (3) The bearing capacity of rock samples with horizontal fissures, fissures whose angles coincided with the fracture surface, and fissures whose surface was perpendicular to the lateral confine direction was the worst; their BCI2 values were found to be 80.6%, 70.8%, and 56.9% of the rock samples without any fissures, respectively. The delayed fracture situation under PSC was identified and analyzed. (4) The crack evolution followed the unified law of localization, and the fissures in the rocks changed the mode of crack development and the path of the deepening and connecting of crack clusters, as well as affecting the time process from damage to collapse. This research innovatively investigated the behavior characteristics of rock samples with a fissure under PSC, and it qualitatively and quantitatively analyzed the bearing capacity of rock mass from local damage to fracture.

14.
Biomater Sci ; 10(12): 3268-3281, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35583113

RESUMO

Multidrug-resistant bacteria infections frequently occur in wound care due to the excessive use of antibiotics. It can cause scar formation, wound closure delay, multiple organ failure, and high mortality. Here, a double network hydrogel with injectability, hemostasis, and antibacterial activity was developed to prompt multidrug-resistant bacteria infected wound healing. The double network hydrogel is composed of gelatin methacryloyl (GelMA), oxidized dextran (ODex), ε-polylysine (EPL), and bacitracin, and formed through the Schiff-base and UV-initiated crosslinking reaction. The injectable hydrogel with an adhesion effect could adapt to the irregular shape of the wound and possesses good hemostatic ability. The hydrogel presents good flexibility and rapid resilience due to its double network structure, and it can prompt cell proliferation and migration. In particular, the hydrogel has broad-spectrum in vitro antimicrobial activities against S. aureus, E. coli, and methicillin-resistant S. aureus (MRSA), and disrupts E. coli and MRSA biofilms. In vivo results demonstrated that the hydrogel can completely heal MRSA-infected wound in rats within 15 days, through inhibiting the growth of bacteria, accelerating skin tissue reepithelialization, collagen deposition, and angiogenesis, as well as adjusting the expression of CD31, α-SMA, and TNF-α. The findings of this study suggest that the presented hydrogel could enhance multidrug-resistant bacteria infected wound healing and mitigate antimicrobial resistance.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Gelatina , Hemostasia , Hidrogéis/química , Metacrilatos , Ratos , Staphylococcus aureus , Cicatrização
15.
Anal Methods ; 14(8): 843-849, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35156973

RESUMO

Listeria monocytogenes (LM) is one of the most common food-borne pathogens and can induce a series of diseases with a high mortality rate to humans; hence, it is very necessary to develop a highly sensitive method for LM detection. Based on this need, a new sandwich-like electrochemical immunosensing platform was developed herein by preparing carboxyl Ti3C2Tx MXene (C-Ti3C2Tx MXene) as the sensing platform and rhodamine b/gold/reduced graphene oxide (RhB/Au/RGO) as the signal amplifier. The high conductivity and large surface area of C-Ti3C2Tx MXene make it a desirable nanomaterial to fix the primary antibody of LM (PAb), while the prepared Au/RGO/RhB nanohybrid is dedicated to assembling the secondary antibody (SAb) of LM, offering an amplified response signal. Through the use of RhB molecule as the signal probe, the experiments showed that the peak currents of RhB increase along with an increase in the concentration of LM from 10 to 105 CFU mL-1, and an extremely low limit of detection (2 CFU mL-1) was obtained on the basis of the proposed immunosensing platform after optimizing various conditions. Hence, it is confirmed that the developed sandwich-like immunosensor based on C-Ti3C2Tx MXene and RhB/Au/Gr has great application in the detection of LM and other analytes.


Assuntos
Técnicas Biossensoriais , Listeria monocytogenes , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite , Humanos , Imunoensaio/métodos , Limite de Detecção , Rodaminas , Titânio/química
16.
Diabetes Metab Syndr Obes ; 14: 4705-4714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880639

RESUMO

PURPOSE: Low serum amylase activity and copy number (CN) variation (CNV) of the salivary amylase gene (AMY1) are reportedly associated with obesity and abnormal glucose metabolism; however, this association remains controversial. We aimed to clarify the relationship between serum amylase activity and the CNV of AMY1/2A/2B with the occurrence of metabolic syndrome (MetS) in Chinese adults. PATIENTS AND METHODS: Anthropometry, metabolic risk factors, and serum amylase activity were assessed in 560 subjects (260 MetS patients; 300 healthy controls). AMY1/2A/2B CNs were evaluated using the highly sensitive droplet digital PCR. RESULTS: The serum total, pancreatic, and salivary amylase activity, but not the AMY1/2A/2B CNs, was significantly lower in MetS patients than that in the control subjects. Patients <45 y had a lower AMY1 CN, compared to that in healthy controls. Low serum amylase activity was significantly associated with high MetS prevalence (p < 0.001). In the receiver operating characteristic curve analysis, serum amylase activity was a significant diagnostic indicator for MetS. The diagnostic value of total amylase was second only to that of γ-glutamyl transpeptidase; it was higher than that of alanine aminotransferase and uric acid. CONCLUSION: Low serum amylase activity was significantly associated with increased risk of MetS in Chinese adults. Therefore, amylase could be a potential biomarker for predicting MetS.

17.
Front Cell Neurosci ; 14: 223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792909

RESUMO

Background: Evidences indicate that exosomes-mediated delivery of microRNAs (miRNAs or miRs) is involved in the neurogenesis of stroke. This study was to investigate the role of exosomal miRNAs in non-drug therapy of electro-acupuncture (EA) regulating endogenous neural stem cells for stroke recovery. Methods: The model of focal cerebral ischemia and reperfusion in rats were established by middle cerebral artery occlusion (MCAO) and treated by EA. The exosomes were extracted from peri-ischemic striatum and identified by exosomal biomarkers, and detected differentially expressed miRNAs with microarray chip. Primary stem cells were cultured, and oxygen-glucose deprivation and reperfusion (OGD/R) was used to mimic vitro ischemic injury. Results: The levels of exosomal biomarkers TSG101 and CD81 were increased in peri-ischemic striatum after EA treatment, and we revealed 25 differentially expressed miRNAs in isolated exosomes, of which miR-146b was selected for further analysis, and demonstrated that EA increased miR-146b expression and its inhibitors could block the effects. Subsequently, we confirmed that EA upregulated miR-146b expression to promote neural stem cells differentiation into neurons in peri-ischemic striatum. In vitro, it was verified that OGD/R hindered neural stem cells differentiation, and miR-146b inhibitors furtherly suppressed its differentiation, simultaneously NeuroD1 was involved in neural stem cells differentiation into neurons. Moreover, in vivo we found EA promoted NeuroD1-mediated neural stem cells differentiation via miR-146b. In addition, EA also could improve neurological deficits through miR-146b after ischemic stroke. Conclusion: EA promotes the differentiation of endogenous neural stem cells via exosomal miR-146b to improve neurological injury after ischemic stroke.

18.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 3884-3885, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-25427812

RESUMO

In the present work we undertook the complete mitochondrial genome sequencing of an important hepatocellular carcinoma model inbred Sprague-Dawley strain for the first time. The total length of the mitogenome was 16,308 bp. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and one non-coding control region (D-loop region). The mutation events were also reported.


Assuntos
Carcinoma Hepatocelular , Modelos Animais de Doenças , Genoma Mitocondrial/genética , Neoplasias Hepáticas , Ratos Sprague-Dawley/genética , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Feminino , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação , RNA Ribossômico/genética , RNA de Transferência/genética , Ratos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA