Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-26, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002141

RESUMO

Cancer-related complications pose significant challenges in the management and treatment of patients with malignancies. Several meta-analyses have indicated improving effects of probiotics on cancer complications, while some studies have reported contentious findings. The purpose of the present study was to evaluate the efficacy of probiotics in addressing cancer complications, including diarrhea, mucositis, and infections, following chemotherapy, radiotherapy, and surgery. Relevant studies were searched in the PubMed, Scopus, Embase and Web of Science databases and Google Scholar up to September 2023. All meta-analyses addressing the effects of probiotics on all cancer treatments-induced complications including infection, diarrhea and oral mucositis were included. The pooled results were calculated using a random-effects model. Analyses of subgroups, sensitivity and publication bias were also conducted. The results revealed that the probiotics supplementation was effective on reduction of total cancer complications (OR:0.53; 95% CI: 0.44, 0.62, p < 0.001; I2=79.0%, p < 0.001), total infection rate (OR:0.47; 95%CI: 0.41, 0.52, p < 0.001; I2= 48.8%, p < 0.001); diarrhea (OR:0.50; 95%CI: 0.44, 0.57, p < 0.001; I2=44.4%, p = 0.023) and severe diarrhea (OR: 0.4; 95%CI: 0.27, 0.56, p < 0.001; I2=31.3%, p = 0.178), oral mucositis (OR: 0.76; 95%CI: 0.58, 0.94, p < 0.001; I2=95.5%, p < 0.001) and severe oral mucositis (OR:0.65, 95%CI: 0.58, 0.72 p < 0.001; I2=22.1%, p = 0.274). Multi strain probiotic (OR:0.49; 95%CI: 0.32, 0.65, p < 0.001; I2=90.7%, p < 0.001) were more efficacious than single strain (OR:0.73; 95%CI: 0.66, 0.81, p < 0.001; I2=0.00%, p = 0.786). The findings of the current umbrella meta-analysis provide strong evidence that probiotic supplementation can reduce cancer complications.

2.
Plants (Basel) ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999606

RESUMO

This study delved into the larval development and the morphological and anatomical transformations that occur in the galls of chestnut trees (Castanea mollissima BL.) and are induced by the chestnut gall wasp Dryocosmus kuriphilus Yasumatsu (GWDK) across various stages: initial, growth, differentiation, maturity, and lignification. Chestnut galls in the five development stages were collected. Gall structural characteristics were observed with an anatomical stereomicroscope, and anatomical changes in galls were analyzed with staining and scanning electron microscope techniques. The chestnut gall wasp laid its eggs on young leaves and buds. Chestnut gall wasp parasitism caused plant tissues to form a gall chamber, with parenchyma, protective, and epidermal layers. The development of the gall structure caused by the infestation of the GWDK gall led to the weakening of the reactive oxygen species (ROS) elimination ability of the host. The accumulation of ROS led to cell wall peroxidation, resulting in structural damage and diminished host resistance, and the parenchyma layer exhibited significant nutrient supply and thickening. The thickness of the protective and epidermal layers varied notably across different growth stages. The oviposition of the chestnut gall wasp induced modifications in the original plant tissues, with gall formation being most favorable in young tissues, correlating with the maturity level of the host plant tissues. Variances in the internal structures of the galls primarily stemmed from nutrient supplementation, while those in the external structure were attributed to defensive characteristics. This research contributes a foundational understanding of gall development induced by the chestnut gall wasp in Chinese chestnut, offering valuable insights into the intricate interplay between insect infestation and plant physiology.

3.
Poult Sci ; 103(9): 103984, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38986357

RESUMO

Improving immune function is an important indicator for establishing cold adaptation in broilers. In the study, to explore the effects and molecular mechanisms of intermittent and mild cold stimulation (IMCS) on the immune function of broilers, CIRP and TRPM8, induced by cold stimulation, as well as the NF-κB and MAPK pathways which play an important role in immune response, were selected to investigate. A total of 192 one-day-old broilers (Ross 308) were selected and randomly divided into the control group (CC) and the cold stimulation group (CS). The broilers in CC were raised at normal feeding temperature from d 1 to 43, while the broilers in CS were subjected to cold stimulation from day 15 to 35, with a temperature 3 °C below that of the CC group for 5 h, at 1 d intervals. The results showed that IMCS had little effect on the broiler hearts, and the myocardial structure was not damaged. On d 22, IMCS significantly increased the mRNA levels of CIRP, TRPM8, P65, P38, COX-2, TNF-α, IFN- γ, IL-6, IL-10, and the protein levels of CIRP, P65, P38, IL-1ß and iNOS in the hearts, and the levels of CIRP and all cytokines in the serum (P ≤ 0.05). The mRNA and protein levels of IκB-α were significantly reduced (P ≤ 0.05). On d 36, the mRNA levels of TRPM8, P65, ERK, and IL-10 in the hearts and the content of COX-2 in the serum in CS were increased significantly (P ≤ 0.05), while the mRNA levels of IκB-α, P38, and IL-1ß were decreased significantly (P ≤ 0.05). On d 43, IMCS significantly upregulated the mRNA levels of TRPM8, IFN- γ, IL-4, IL-6, IL-10, and the protein levels of IκB-α, P38, and the levels of iNOS, TNF-α, IL6 and IL10 in the serum (P ≤ 0.05); whereas it significantly downregulated CIRP, JNK, P38, iNOS, TNF-α mRNA levels, and CIRP, P65, ERK, JNK, IL1ß and iNOS protein levels (P ≤ 0.05). Therefore, IMCS can enhance broiler immune function through co-regulation of CIRP and TRPM8 on the NF-κB and MAPK pathways, which facilitate the cold adaptation in broilers.

4.
J Mol Med (Berl) ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953935

RESUMO

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1ß, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.

5.
Haematologica ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961734

RESUMO

Generation of mammalian red blood cells requires the expulsion of polarized nuclei late in terminal erythroid differentiation. However, the mechanisms by which spherical erythroblasts determine the direction of nuclear polarization and maintain asymmetry during nuclear expulsion are poorly understood. Given the analogy of erythroblast enucleation to asymmetric cell division and the key role of Aurora kinases in mitosis, we sought to investigate the function of Aurora kinases in erythroblast enucleation. We found that AURKA (Aurora kinase A) is abundantly expressed in orthochromatic erythroblasts. Intriguingly, high-resolution confocal microscopy analyses revealed that AURKA co-localized with the centrosome on the side of the nucleus opposite its membrane contact point during polarization and subsequently translocated to the anterior end of the protrusive nucleus upon nuclear exit. Mechanistically, AURKA regulated centrosome maturation and localization via interaction with i-tubulin to provide polarization orientation for the nucleus. Furthermore, we identified ECT2 (epithelial cell transforming 2), a guanine nucleotide exchange factor, as a new interacting protein and ubiquitination substrate of AURKA. After forming the nuclear protrusion, AURKA translocated to the anterior end of the protrusive nucleus to directly degrade ECT2, which is partly dependent on kinase activity of AURKA. Moreover, knockdown of ECT2 rescued impaired enucleation caused by AURKA inhibition. Our findings have uncovered a previously unrecognized role of Aurora kinases in the establishment of nuclear polarization and eventual nuclear extrusion and provide new mechanistic insights into erythroblast enucleation.

6.
Environ Sci Pollut Res Int ; 31(28): 41032-41045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842781

RESUMO

The problem of soil and water contamination caused by Cr(VI) discharged from the dyeing, electroplating, and metallurgical industries is becoming increasingly serious, posing a potentially great threat to the environment and public health. Therefore, it is crucial to develop a fast, efficient, and cost-effective adsorbent for remediating Cr-contaminated wastewater. In this work, MgAl-LDH/commercial-activated carbon nanocomposites (LDH-CACs) are prepared with hydrothermal. The effects of preparation and reaction conditions on the composite properties are first investigated, and then its adsorption behavior is thoroughly explored. Finally, a potential adsorption mechanism is proposed by several characterizations like SEM-EDS, XRD, FTIR, and XPS. The removal of Cr(VI) reaches 72.47% at optimal conditions, and the adsorption study demonstrates that LDH-CAC@1 has an extremely rapid adsorption rate and a maximum adsorption capacity of 116.7 mg/g. The primary removal mechanisms include adsorption-coupled reduction, ion exchange, surface precipitation, and electrostatic attraction. The reusability experiment illustrates that LDH-CAC@1 exhibits promising reusability. This study provides an effective adsorbent with a remarkably fast reaction, which has positive environmental significance for the treatment of Cr(VI) wastewater.


Assuntos
Carvão Vegetal , Cromo , Poluentes Químicos da Água , Adsorção , Cromo/química , Poluentes Químicos da Água/química , Carvão Vegetal/química , Nanocompostos/química , Purificação da Água/métodos , Águas Residuárias/química , Carbono/química
7.
J Ethnopharmacol ; 333: 118407, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38824979

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Taohong Siwu Decoction (TSD), a classic traditional Chinese medicine formula, is used for the treatment of vascular diseases, including vascular dementia (VD). However, the mechanisms remain unclear. AIM OF STUDY: This study aimed to investigate whether TSD has a positive effect on cognitive impairment in VD rats and to confirm that the mechanism of action is related to the Endoplasmic Reticulum stress (ERs) and cell apoptosis signaling pathway. MATERIALS AND METHODS: A total of 40 male adult Sprague-Dawley rats were divided into four groups: sham-operated group (Sham), the two-vessel occlusion group (2VO), the 2VO treated with 4.5 g/kg/d TSD group (2VO + TSD-L), the 2VO treated with 13.5 g/kg/d TSD group (2VO + TSD-H). The rats underwent either 2VO surgery or sham surgery. Postoperative TSD treatment was given for 4 consecutive weeks. Behavioral tests were initiated at the end of gastrulation. Open-field test (OFT) was used to detect the activity level. The New Object Recognition test (NOR) was used to test long-term memory. The Morris water maze (MWM) test was used to examine the foundation of spatial learning and memory. As a final step, the hippocampus was taken for molecular testing. The protein levels of GRP78 (Bip), p-PERK, PERK, IRE1α, p-IRE1α, ATF6, eIF2α, p-eIF2α, ATF4, XBP1, Bcl-2 and Bax were determined by Western blot. Immunofluorescence visualizes molecular expression. RESULTS: In the OFT, residence time in the central area was significantly longer in both TSD treatment groups compared to the 2VO group. In the NOR, the recognition index was obviously elevated in both TSD treatment groups. The 2VO group had a significantly longer escape latency and fewer times in crossing the location of the platform compared with the Sham group in MWM. TSD treatment reversed this notion. Pathologically, staining observations confirmed that TSD inhibited hippocampal neuronal loss and alleviated the abnormal reduction of the Nissl body. In parallel, TUNEL staining illustrated that TSD decelerated neuronal apoptosis. Western Blot demonstrated that TSD reduces the expression of ERs and apoptotic proteins. CONCLUSION: In this study, the significant ameliorative effect on cognitive impairment of TSD has been determined by comparing the behavioral data of the 4 groups of rats. Furthermore, it was confirmed that this effect of TSD was achieved by suppressing the ERs-mediated apoptosis signaling pathway.


Assuntos
Apoptose , Disfunção Cognitiva , Demência Vascular , Medicamentos de Ervas Chinesas , Estresse do Retículo Endoplasmático , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Apoptose/efeitos dos fármacos , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos
8.
Proc Biol Sci ; 291(2025): 20240500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889790

RESUMO

Gene drive alleles that can bias their own inheritance could engineer populations for control of disease vectors, invasive species and agricultural pests. There are successful examples of suppression drives and confined modification drives, but developing confined suppression drives has proven more difficult. However, CRISPR-based toxin-antidote dominant embryo (TADE) suppression drive may fill this niche. It works by targeting and disrupting a haplolethal target gene in the germline with its gRNAs while rescuing this target. It also disrupts a female fertility gene by driving insertion or additional gRNAs. Here, we used a reaction-diffusion model to assess drive performance in continuous space, where outcomes can be substantially different from those in panmictic populations. We measured drive wave speed and found that moderate fitness costs or target gene disruption in the early embryo from maternally deposited nuclease can eliminate the drive's ability to form a wave of advance. We assessed the required release size, and finally we investigated migration corridor scenarios. It is often possible for the drive to suppress one population and then persist in the corridor without invading the second population, a potentially desirable outcome. Thus, even imperfect variants of TADE suppression drive may be excellent candidates for confined population suppression.


Assuntos
Sistemas CRISPR-Cas , Tecnologia de Impulso Genético , Animais , Modelos Genéticos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
9.
Biomolecules ; 14(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927080

RESUMO

Disulfidptosis, a newly identified mode of programmed cell death, is yet to be comprehensively elucidated with respect to its multi-omics characteristics in tumors, specific pathogenic mechanisms, and antitumor functions in liver cancer. This study included 10,327 tumor and normal tissue samples from 33 cancer types. In-depth analyses using various bioinformatics tools revealed widespread dysregulation of disulfidptosis-related genes (DRGs) in pan-cancer and significant associations with prognosis, genetic variations, tumor stemness, methylation levels, and drug sensitivity. Univariate and multivariate Cox regression and LASSO regression were used to screen and construct prognosis-related hub DRGs and predictive models in the context of liver cancer. Subsequently, single cell analysis was conducted to investigate the subcellular localization of RPN1, a hub DRG, in various solid tumors. Western blotting was performed to validate the expression of RPN1 at both cellular and tissue levels. Additionally, functional experiments, including CCK8, EdU, clone, and transwell assays, indicated that RPN1 knockdown promoted the proliferative and invasive capacities of liver cancer cells. Therefore, this study elucidated the multi-omics characteristics of DRGs in pan-cancer and established a prognostic model for liver cancer. Additionally, this study revealed the molecular functions of RPN1 in liver cancer, suggesting its potential as a therapeutic target for this disease.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Prognóstico , Apoptose/genética , Biologia Computacional/métodos , Multiômica
10.
Cancer Lett ; 592: 216934, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710299

RESUMO

The Staphylococcal nuclease and Tudor domain containing 1 (SND1) has been identified as an oncoprotein. Our previous study demonstrated that SND1 impedes the major histocompatibility complex class I (MHC-I) assembly by hijacking the nascent heavy chain of MHC-I to endoplasmic reticulum-associated degradation. Herein, we aimed to identify inhibitors to block SND1-MHC-I binding, to facilitate the MHC-I presentation and tumor immunotherapy. Our findings validated the importance of the K490-containing sites in SND1-MHC-I complex. Through structure-based virtual screening and docking analysis, (-)-Epigallocatechin (EGC) exhibited the highest docking score to prevent the binding of MHC-I to SND1 by altering the spatial conformation of SND1. Additionally, EGC treatment resulted in increased expression levels of membrane-presented MHC-I in tumor cells. The C57BL/6J murine orthotopic melanoma model validated that EGC increases infiltration and activity of CD8+ T cells in both the tumor and spleen. Furthermore, the combination of EGC with programmed death-1 (PD-1) antibody demonstrated a superior antitumor effect. In summary, we identified EGC as a novel inhibitor of SND1-MHC-I interaction, prompting MHC-I presentation to improve CD8+ T cell response within the tumor microenvironment. This discovery presents a promising immunotherapeutic candidate for tumors.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , Catequina , Endonucleases , Camundongos Endogâmicos C57BL , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Humanos , Apresentação de Antígeno/imunologia , Endonucleases/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Simulação de Acoplamento Molecular , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/terapia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo
11.
J Ethnopharmacol ; 332: 118377, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782307

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Tibetan medicine Ganlu Formula, as a classic prescription, is widely used across the Qinghai-Tibet Plateau area of China, which has a significant effect on relieving the course of rheumatoid arthritis (RA). However, the active compounds and underlying mechanisms of Ganlu Formula in RA treatment remain largely unexplored. AIM OF THE STUDY: This study aimed to elucidate the active substances and potential mechanisms of the ethyl acetate extract of Ganlu Formula ethyl acetate extract (GLEE) in the treatment of RA. MATERIALS AND METHODS: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was utilized to analyze and identify the chemical constituents within GLEE. Discovery Studio molecular virtual docking technology was utilized to dock the interaction of GLEE with inflammation-related pathway proteins. The GLEE gene library was obtained by transcriptome sequencing. Collagen-induced arthritic(CIA) rats were utilized to assess the antiarthritic efficacy of GLEE. Micro-CT imaging was employed to visualize the rat paw, and ultrasound imaging revealed knee joint effusion. Evaluation of synovial tissue pathological changes was conducted through hematoxylin-eosin staining and saffranine solid green staining, while immunohistochemical staining was employed to assess NLRP3 expression along with inflammatory markers. Immunofluorescence staining was utilized to identify M1 macrophages. RESULTS: Metabolomic analysis via UPLC-Q-TOF-MS identified 28 potentially bioactive compounds in GLEE, which interacted with the active sites of key proteins such as NLRP3, NF-κB, and STAT3 through hydrogen bonds, C-H bonds, and electrostatic attractions. In vitro analyses demonstrated that GLEE significantly attenuated NLRP3 inflammasome activation and inhibited the polarization of bone marrow-derived macrophages (BMDMs) towards the M1 phenotype. In vivo, GLEE not only prevented bone mineral density (BMD) loss but also reduced ankle swelling in CIA rats. Furthermore, it decreased the expression of the NLRP3 inflammasome and curtailed the release of inflammatory mediators within the knee joint. CONCLUSION: GLEE effectively mitigated inflammatory responses in both blood and knee synovial membranes of CIA rats, potentially through the down-regulation of the NLRP3/Caspase-1/IL-1ß signaling pathway and reduction in M1 macrophage polarization.


Assuntos
Artrite Experimental , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Ratos , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Artrite Reumatoide/tratamento farmacológico , Ratos Sprague-Dawley , Camundongos , Antirreumáticos/farmacologia , Antirreumáticos/isolamento & purificação , Antirreumáticos/química , Acetatos
12.
J Colloid Interface Sci ; 669: 75-82, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38705114

RESUMO

Photocatalytic nitrogen fixation is seen to be a potential technology for nitrogen reduction due to its eco-friendliness, low energy consumption, and environmental protection. In this study, photocatalysts with abundant oxygen vacancies (Zr-naphthalene dicarboxylic acid (Zr-NDC) and Zr-phthalic acid (Zr-BDC)) were designed using 1,4-naphthalene dicarboxylic acid (H2NDC) and 1,4-phthalic acid (H2BDC) as ligands. Since the structure of H2NDC includes one extra benzene ring than H2BDC, the charge density differential of the organic ligand is probably altered. The hypothesis is proved by density function theory (DFT) calculation. The abundant oxygen vacancies of the catalyst offer numerous active sites for nitrogen fixation. Concurrently, the process of ligand-metal charge transfer facilitates photo-electron transfer, creating an active center for nitrogen reduction. Additionally, the functionalization of ligand amplifies another pathway for charge transfer, broadening the light absorption range of Metal-organic framework (MOF) and increasing its capacity for nitrogen reduction. In contrast to H2BDC, the benzene ring added in H2NDC structure acts as an electron energy storage tank with a stronger electron density difference favorable for photogenerated electron-hole separation resulting in higher photocatalytic activity in Zr-NDC. The experimental results show that the nitrogen fixation efficiency of Zr-NDC is 163.7 µmol g-1h-1, which is significantly better than that of Zr-BDC (29.3 µmol g-1h-1). This work utilizes cost-effective and non-toxic ingredients to design highly efficient photocatalysts, thereby significantly contributing to the practical implementation of green chemistry principles.

13.
Foods ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790843

RESUMO

The effect of sulfuric acid hydrolysis on the Pickering emulsifying capacity of Tartary buckwheat flour (TBF) rich in starch was evaluated for the first time. The results indicate that the sulfuric acid concentration and hydrolysis time had a significant impact on the Pickering emulsifying capacity of acid-hydrolyzed Tartary buckwheat flour (HTBF). A low sulfuric acid concentration (1-2 mol/L) could reduce the particle size of HTBF, but it also decreased the Pickering emulsifying ability. At a sulfuric acid concentration of 3 mol/L, appropriate treatment time (2 and 3 days) led to particle aggregation but significantly improved wettability, thereby resulting in a rapid enhancement in emulsifying capacity. Under these conditions, the obtained HTBF (HTBF-D2-C3 and HTBF-D3-C3) could stabilize medium-chain triglyceride (MCT)-based Pickering high-internal-phase emulsions (HIPEs) with an oil-phase volume fraction of 80% at the addition amounts (c) of ≥1.0% and ≥1.5%, respectively. Its performance was significantly superior to that of TBF (c ≥ 2.0%). Furthermore, at the same addition amount, the droplet size of HIPEs constructed by HTBF-D3-C3 was smaller than that of HTBF-D2-C3, and its gel strength and microrheological performance were also superior to those of HTBF-D2-C3, which was attributed to the higher wettability of HTBF-D3-C3. The findings of this study can facilitate the in-depth application of Tartary buckwheat and provide references for the development of novel Pickering emulsifiers.

14.
Nat Commun ; 15(1): 4556, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811549

RESUMO

The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 µm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.

15.
Water Res ; 257: 121707, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705067

RESUMO

Solar steam generation (SSG) using hydrogels is emerging as a promising technology for clean water production. Herein, a novel oxygen-doped microporous carbon hydrogel (OPCH), rich in hydrophilic groups and micropores, has been synthesized from microalgae to optimize SSG. OPCH outperforms hydrogels with hydrophobic porous carbon or nonporous hydrophilic biochar, significantly reducing water's evaporation enthalpy from 2216.06 to 1107.88 J g-1 and activating 42.3 g of water per 100 g for evaporation, resulting in an impressive evaporation rate of 2.44 kg m-2 h-1 under one sun. A detailed investigation into the synergistic effects of hydrophilic groups and micropores on evaporation via a second derivative thermogravimetry method revealed two types of bonded water contributing to enthalpy reduction. Molecular dynamics simulations provided further insights, revealing that the hydrophilic micropores considerably decrease both the number and the lifetime of hydrogen bonds among water molecules. This dual effect not only reduces the energy barrier for evaporation but also enhances the kinetic energy needed for the phase transition, significantly boosting the water evaporation process. The sustained high evaporation rates of OPCH, observed across multiple cycles and under varying salinity conditions, underscore its potential as a highly efficient and sustainable solution for SSG applications.


Assuntos
Carbono , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Vapor , Água , Hidrogéis/química , Carbono/química , Porosidade , Água/química , Simulação de Dinâmica Molecular
16.
Adv Mater ; 36(21): e2313164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577834

RESUMO

Dynamically crosslinked polymers (DCPs) have gained significant attention owing to their applications in fabricating (re)processable, recyclable, and self-healable thermosets, which hold great promise in addressing ecological issues, such as plastic pollution and resource scarcity. However, the current research predominantly focuses on redefining and/or manipulating their geometries while replicating their bulk properties. Given the inherent design flexibility of dynamic covalent networks, DCPs also exhibit a remarkable potential for various novel applications through postsynthesis reprogramming their properties. In this review, the recent advancements in strategies that enable DCPs to transform their bulk properties after synthesis are presented. The underlying mechanisms and associated material properties are overviewed mainly through three distinct strategies, namely latent catalysts, material-growth, and topology isomerizable networks. Furthermore, the mutual relationship and impact of these strategies when integrated within one material system are also discussed. Finally, the application prospects and relevant issues necessitating further investigation, along with the potential solutions are analyzed.

17.
Opt Lett ; 49(8): 2053-2056, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621074

RESUMO

Plasmonic nanosensors and the dynamic control of light fields are of the utmost significance in the field of micro- and nano-optics. Here, our study successfully demonstrates a plasmonic nanosensor in a compact coupled resonator system and obtains the pressure-induced transparency phenomenon for the first time to our knowledge. The proposed structure consists of a groove and slot cavity coupled in the metal-insulator-metal waveguide, whose mechanical and optical characteristics are investigated in detail using the finite element method. Simulation results show that we construct a quantitative relationship among the resonator deformation quantity, the applied pressure variation, and the resonant wavelength offset by combining the mechanical and optical properties of the proposed system. The physical features contribute to highly efficient plasmonic nanosensors for refractive index and optical pressure sensing with sensitivity of 1800 nm/RIU and 7.4 nm/MPa, respectively. Furthermore, the light waves are coupled to each other in the resonators, which are detuned due to the presence of pressure, resulting in the pressure-induced transparency phenomenon. It is noteworthy to emphasize that, unlike previously published works, our numerical results take structural deformation-induced changes in optical properties into account, making them trustworthy and practical. The proposed structure introduces a novel, to the best of our knowledge, approach for the dynamic control of light fields and has special properties that can be utilized for the realization of various integrated components.

18.
Cancer Gene Ther ; 31(6): 871-883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459370

RESUMO

EGR4 (Early Growth Response 4) is a member of the EGR family, involving in tumorigenesis. However, the function and action mechanism of EGR4 in the pathogenesis of colorectal cancer (CRC) remain unclear. To address this, we assessed the prognosis of CRC based on EGR4 using the Kaplan-Meier plotter tool and tissue microarray. The abundance of immunoinfiltration was evaluated through ssGSEA, TISIDB, and TIMER. In vitro experiments involving knockdown or overexpression of EGR4 were performed, and RNA-sequencing was conducted to explore potential mechanisms. Furthermore, we used oxaliplatin and 5-fluorouracil to validate the impact of EGR4 on chemo-resistance. Pan-cancer analysis and tissue microarray showed that EGR4 was highly expressed in CRC and significantly correlated with an unfavorable prognosis. Moreover, EGR4 expression was associated with immunoinfiltration and cancer-associated fibroblasts in the CRC microenvironment. Functional enrichment demonstrated that high-expressional EGR4 were involved in chromatin and nucleosome assembly. Additionally, EGR4 promoted the proliferation of CRC cells. Mechanistically, EGR4 upregulated TNFα to activate the NF-κB signaling pathway, and its knockdown reduced p65 nuclear translocation. Importantly, combining shEGR4 with oxaliplatin and 5-fluorouracil significantly inhibited CRC proliferation. Taken together, these findings provide new insights into the potential prognosis and therapeutic targets of EGR4 in CRC.


Assuntos
Biomarcadores Tumorais , Proliferação de Células , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos , Masculino , Linhagem Celular Tumoral , Estudos Prospectivos
19.
Cell Commun Signal ; 22(1): 166, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454449

RESUMO

BACKGROUND: Clinical and experimental studies have shown that the myocardial inflammatory response during pathological events varies between males and females. However, the cellular and molecular mechanisms of these sex differences remain elusive. CD73/adenosine axis has been linked to anti-inflammatory responses, but its sex-specific cardioprotective role is unclear. The present study aimed to investigate whether the CD73/adenosine axis elicits sex-dependent cardioprotection during metabolic changes and myocarditis induced by hypobaric hypoxia. METHODS: For 7 days, male and female mice received daily injections of the CD73 inhibitor adenosine 5'- (α, ß-methylene) diphosphate (APCP) 10 mg/kg/day while they were kept under normobaric normoxic and hypobaric hypoxic conditions. We evaluated the effects of hypobaric hypoxia on the CD73/adenosine axis, myocardial hypertrophy, and cardiac electrical activity and function. In addition, metabolic homeostasis and immunoregulation were investigated to clarify the sex-dependent cardioprotection of the CD73/adenosine axis. RESULTS: Hypobaric hypoxia-induced cardiac dysfunction and adverse remodeling were more pronounced in male mice. Also, male mice had hyperactivity of the CD73/adenosine axis, which aggravated myocarditis and metabolic shift compared to female mice. In addition, CD73 inhibition triggered prostatic acid phosphatase ectonucleotidase enzymatic activity to sustain adenosine overproduction in male mice but not in female mice. Moreover, dual inhibition prostatic acid phosphatase and CD73 enzymatic activities in male mice moderated adenosine content, alleviating glycolytic shift and proinflammatory response. CONCLUSION: The CD73/adenosine axis confers a sex-dependent cardioprotection. In addition, extracellular adenosine production in the hearts of male mice is influenced by prostatic acid phosphatase and tissue nonspecific alkaline phosphatase.


Assuntos
Adenosina , Miocardite , Feminino , Masculino , Camundongos , Animais , Miocardite/metabolismo , Miocardite/patologia , Hipóxia/metabolismo , Miocárdio/metabolismo , Coração , 5'-Nucleotidase/metabolismo
20.
Sci Rep ; 14(1): 4018, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369634

RESUMO

The role of ATP6AP1 in colorectal cancer (CRC) remains elusive despite its observed upregulation in pan-cancer. Therefore, the current study aimed to assess the clinical significance of ATP6AP1 and its relationship with the immune infiltration in CRC. Transcriptome data of CRC were obtained from The Cancer Genome Atlas (TCGA) database and analyzed using the combination of R packages and tumor-related databases, including TIMER2, TISIDB, cBioPortal, and MethSurv. The tissue arrays and immunohistochemical staining were performed to verify the expression and clinical characteristics of ATP6AP1. The results revealed that ATP6AP1 expression was significantly elevated in CRC and associated with poor clinicopathological characteristics and prognosis. Furthermore, the analysis demonstrated ATP6AP1 expression was correlated with the infiltration of immune cells and cancer-associated fibroblasts in the microenvironment of CRC. Moreover, ATP6AP1 was found to be linked to various immune checkpoints and chemokines, with enrichment of cytoplasmic vesicle lumen, endopeptidase regulator activity, and endopeptidase inhibitor activity observed in the high ATP6AP1 expressional group. In conclusion, the findings of this study suggest that ATP6AP1 upregulation may serve as a biomarker for poor diagnosis in CRC and offer a potential target for immunotherapy in CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , ATPases Vacuolares Próton-Translocadoras , Humanos , Neoplasias Colorretais/genética , Vesículas Citoplasmáticas , Prognóstico , Microambiente Tumoral , ATPases Vacuolares Próton-Translocadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA