Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Transl Med ; 9(400)2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747514

RESUMO

Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Metástase Neoplásica/prevenção & controle , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transdução de Sinais/fisiologia
3.
Cell Mol Bioeng ; 9(4): 509-529, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28392840

RESUMO

The delivery of therapeutics to the central nervous system (CNS) remains a major challenge in part due to the presence of the blood-brain barrier (BBB). Recently, cell-derived vesicles, particularly exosomes, have emerged as an attractive vehicle for targeting drugs to the brain, but whether or how they cross the BBB remains unclear. Here, we investigated the interactions between exosomes and brain microvascular endothelial cells (BMECs) in vitro under conditions that mimic the healthy and inflamed BBB in vivo. Transwell assays revealed that luciferase-carrying exosomes can cross a BMEC monolayer under stroke-like, inflamed conditions (TNF-α activated) but not under normal conditions. Confocal microscopy showed that exosomes are internalized by BMECs through endocytosis, co-localize with endosomes, in effect primarily utilizing the transcellular route of crossing. Together, these results indicate that cell-derived exosomes can cross the BBB model under stroke-like conditions in vitro. This study encourages further development of engineered exosomes as drug delivery vehicles or tracking tools for treating or monitoring neurological diseases.

4.
Stem Cell Res Ther ; 6: 181, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26391980

RESUMO

INTRODUCTION: Mesenchymal stem cells (MSCs) are adult multipotent stem cells that possess regenerative and immunomodulatory properties. They have been widely investigated as therapeutic agents for a variety of disease conditions, including tissue repair, inflammation, autoimmunity, and organ transplantation. Importantly, systemically infused MSCs selectively home to primary and metastatic tumors, though the molecular mechanisms of tumor tropism of MSCs remain incompletely understood. We have exploited the active and selective MSCs homing to cancer microenvironments to develop a rapid and selective blood test for the presence of cancer. METHODS: We tested the concept of using transplanted MSCs as the basis for a simple cancer blood test. MSCs were engineered to express humanized Gaussia luciferase (hGluc). In a minimally invasive fashion, hGluc secreted by MSCs into circulation as a reporter for cancer presence, was assayed to probe whether MSCs co-localize with and persist in cancerous tissue. RESULTS: In vitro, hGluc secreted by engineered MSCs was detected stably over a period of days in the presence of serum. In vivo imaging showed that MSCs homed to breast cancer lung metastases and persisted longer in tumor-bearing mice than in tumor-free mice (P < 0.05). hGluc activity in blood of tumor-bearing mice was significantly higher than in their tumor-free counterparts (P < 0.05). CONCLUSIONS: Both in vitro and in vivo data show that MSCs expressing hGluc can identify and report small tumors or metastases in a simple blood test format. Our novel and simple stem cell-based blood test can potentially be used to screen, detect, and monitor cancer and metastasis at early stages and during treatment.


Assuntos
Células-Tronco Adultas/metabolismo , Neoplasias da Mama/metabolismo , Engenharia Celular , Luciferases , Neoplasias Pulmonares/metabolismo , Células-Tronco Adultas/patologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Xenoenxertos , Humanos , Luciferases/biossíntese , Luciferases/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Transplante de Neoplasias
5.
Acta Biomater ; 26: 13-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26265060

RESUMO

Injectable biomaterials have been evaluated as potential new therapies for myocardial infarction (MI) and heart failure. These materials have improved left ventricular (LV) geometry and ejection fraction, yet there remain concerns that biomaterial injection may create a substrate for arrhythmia. Since studies of this risk are lacking, we utilized optical mapping to assess the effects of biomaterial injection and interstitial spread on cardiac electrophysiology. Healthy and infarcted rat hearts were injected with a model poly(ethylene glycol) hydrogel with varying degrees of interstitial spread. Activation maps demonstrated delayed propagation of action potentials across the LV epicardium in the hydrogel-injected group when compared to saline and no-injection groups. However, the degree of the electrophysiological changes depended on the spread characteristics of the hydrogel, such that hearts injected with highly spread hydrogels showed no conduction abnormalities. Conversely, the results of this study indicate that injection of a hydrogel exhibiting minimal interstitial spread may create a substrate for arrhythmia shortly after injection by causing LV activation delays and reducing gap junction density at the site of injection. Thus, this work establishes site of delivery and interstitial spread characteristics as important factors in the future design and use of biomaterial therapies for MI treatment. STATEMENT OF SIGNIFICANCE: Biomaterials for treating myocardial infarction have become an increasingly popular area of research. Within the past few years, this work has transitioned to some large animals models, and Phase I & II clinical trials. While these materials have preserved/improved cardiac function the effect of these materials on arrhythmogenesis, which is of considerable concern when injecting anything into the heart, has yet to be understood. Our manuscript is therefore a first of its kind in that it directly examines the potential of an injectable material to create a substrate for arrhythmias. This work suggests that site of delivery and distribution in the tissue are important criteria in the design and development of future biomaterial therapies for myocardial infarction treatment.


Assuntos
Potenciais de Ação/fisiologia , Sistema de Condução Cardíaco/química , Sistema de Condução Cardíaco/fisiologia , Hidrogéis/administração & dosagem , Hidrogéis/química , Condução Nervosa/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/farmacologia , Condutividade Elétrica , Feminino , Sistema de Condução Cardíaco/efeitos dos fármacos , Ventrículos do Coração/química , Ventrículos do Coração/efeitos dos fármacos , Injeções , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA