Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.681
Filtrar
1.
Neural Regen Res ; 20(1): 253-264, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767490

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00033/figure1/v/2024-05-14T021156Z/r/image-tiff The E3 ubiquitin ligase, carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP), also functions as a co-chaperone and plays a crucial role in the protein quality control system. In this study, we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer's disease. We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain. CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests, reduced amyloid-ß plaques, and decreased the expression of both amyloid-ß and phosphorylated tau. CHIP also alleviated the concentration of microglia and astrocytes around plaques. In APP/PS1 mice of a younger age, CHIP overexpression promoted an increase in ADAM10 expression and inhibited ß-site APP cleaving enzyme 1, insulin degrading enzyme, and neprilysin expression. Levels of HSP70 and HSP40, which have functional relevance to CHIP, were also increased. Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated, which may also reflect a potential mechanism for the neuroprotective effect of CHIP. Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice. Indeed, overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer's disease.

2.
Cell Stem Cell ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38723634

RESUMO

Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity in vitro. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms in vivo, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms in vivo. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38728216

RESUMO

Ni-rich layered ternary cathodes are promising candidates thanks to their low toxic Co-content and high energy density (∼800 Wh/kg). However, a critical challenge in developing Ni-rich cathodes is to improve cyclic stability, especially under high voltage (>4.3 V), which directly affects the performance and lifespan of the battery. In this study, niobium-doped strontium titanate (Nb-STO) is successfully synthesized via a facile solvothermal method and used as a surface modification layer onto the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The results exhibited that the Nb-STO modification significantly improved the cycling stability of the cathode material even under high-voltage (4.5 V) operational conditions. In particular, the best sample in our work could provide a high discharge capacity of ∼190 mAh/g after 100 cycles under 1 C with capacity retention over 84% in the voltage range of 3.0-4.5 V, superior to the pristine NCM811 (∼61%) and pure STO modified STO-811-600 (∼76%) samples under the same conditions. The improved electrochemical performance and stability of NCM811 under high voltage should be attributed to not only preventing the dissolution of the transition metals, further reducing the electrolyte's degradation by the end of charge, but also alleviating the internal resistance growth from uncontrollable cathode-electrolyte interface (CEI) evolution. These findings suggest that the as-synthesized STO with an optimized Nb-doping ratio could be a promising candidate for stabilizing Ni-rich cathode materials to facilitate the widespread commercialization of Ni-rich cathodes in modern LIBs.

4.
Magn Reson Med ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.

6.
Australas J Ageing ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741527

RESUMO

OBJECTIVE: Previous research has highlighted a heightened occurrence of social isolation and loneliness in older adults diagnosed with chronic lung diseases. Nevertheless, there exists a dearth of studies that have explored the influence of impoverished social relationships on lung function. This study aimed to examine the longitudinal association between social isolation, loneliness and lung function over 4 years among middle-aged and older Chinese adults. METHODS: This study employed two waves (2011 and 2015) of data from the China Health and Retirement Longitudinal Study (CHARLS). The analysis was limited to participants aged 45 years and above and stratified based on gender (3325 men and 3794 women). The measurement of peak expiratory flow (PEF) served as an indicator for assessing lung function. Lagged dependent variable regression models, accounting for covariates, were employed to explore the relationship between baseline social isolation and loneliness and the subsequent PEF. RESULTS: For women, social isolation was significantly associated with the decline in PEF at follow-up (ß = -.06, p < .001) even after adjusting for all covariates; no significant correlation was observed between loneliness and PEF. Among men, there was no significant association found between either social isolation or loneliness and PEF. CONCLUSIONS: Social isolation is prospectively associated with worse lung function in middle-aged and older Chinese women but not men. The results highlight the importance of promoting social relationships in public health initiatives, especially in groups that are more vulnerable.

7.
J Hazard Mater ; 473: 134570, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38772105

RESUMO

The debate surrounding "source" and "sink" of microplastics (MPs) in coastal water has persisted for decades. While the transportation of MPs is influenced by surface runoff and currents, the precise transport patterns remain inadequately defined. In this study, the typical coastal habitat - marine ranching in Haizhou Bay (Jiangsu Province, China) were selected as a case study to assess the ecological risk of MPs. An enhanced framework was employed to assess the entire community characteristics of MPs in various environmental compartments, including surface water (SW), middle water (MW), bottom water (BW), sea bottom sediment (SS), and intertidal sediment (IS). The results of the assessment showed a low risk in the water column and a high risk in the sediment. PERMANOVA based on size and polymer of MPs revealed significant differences between IS and other compartments (SW, MW, BW, and SS) (P < 0.001). The co-occurrence network analysis for MP size indicated that most sites occupied central positions, while the analysis for MP polymer suggested that sites near the marine ranching area held more central positions, with sites in MW, BW, and SS being somewhat related to IS. Generalized additive model (GAM) demonstrated that MP concentration in the water correlated with Chla and nutrients, whereas MPs in sediment exhibited greater susceptibility to dissolved oxygen (DO) and salinity. We believe that except for the natural sedimentation and re-suspension of MPs in the vertical direction, MPs in bottom water may migrate to the surface water due to upwelling mediated by artificial reefs. Additionally, under the combined influence of surface runoff, currents, and tides, MPs may migrate horizontally, primarily occurring between middle and bottom water and sediments. The study recommends limiting and reducing wastewater and sewage discharge, as well as regulating fishing and aquaculture activities to control the sources and sinks of MPs in coastal water. Moreover, it advocates the implementation and strengthening of marine monitoring activities to gain a better understanding of the factors driving MP pollution in marine ranching area.

8.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732622

RESUMO

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Sucos de Frutas e Vegetais , Lipopolissacarídeos , Metabolômica , Estresse Oxidativo , Rosa , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Rosa/química , Metabolômica/métodos , Camundongos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Farmacologia em Rede , Fermentação , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Modelos Animais de Doenças , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Citocinas/metabolismo , Metabolismo Energético/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38769195

RESUMO

BACKGROUND: High-resolution mapping offers superior accuracy in delineating conduction features; however, certain characteristics are still linked to elevated recurrence rates of atrial tachycardia (AT), suggesting the influence of additional mechanisms. This study systematically assessed the substrate of functional conduction block (FCB) regions in relation to the mechanisms of multiple ATs. METHODS: In this study, the Carto system facilitated the mapping of ATs in 13 patients undergoing ablation, each presenting with more than two AT variants. FCB regions were marked and further analyzed. RESULTS: A total of 33 sustained ATs were mapped across the patient cohort. FCB regions showed convertibility in 7 of 13 patients (54%). Three kinds of presentations can be summarized by the FCB region: Firstly, the FCB region could act as the main obstacle sustaining the localized reentrant pathway, for which rounding obviously has a direct correlation with the mechanism of the AT (27%). Secondly, the FCB regions could act as obstacle lines to reorganize the propagation of the reentry in localized AT and macroreentrant AT (55%). Lastly, the FCB region could act as a bystander and may not be related to the mechanism of the ATs (18%). The potentials in FCB regions mostly performed low voltages or fragmented potentials (FPs) in the ATs which they did not perform the conduction block (90%). CONCLUSION: In multiple ATs, FCB regions may not be uncommon. The participation of FCB regions in the mechanism of ATs showed three different kinds of performance. The dynamic nature of this substrate may provide insight into the reasons for the high recurrence of related ATs.

10.
MedComm (2020) ; 5(6): e570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774917

RESUMO

Ferroptosis is an iron-dependent cell death form that initiates lipid peroxidation (LPO) in tumors. In recent years, there has been growing interest on ferroptosis, but how to propel it forward translational medicine remains in mist. Although experimental ferroptosis inducers such as RSL3 and erastin have demonstrated bioactivity in vitro, the poor antitumor outcome in animal model limits their development. In this study, we reveal a novel ferroptosis inducer, oxaliplatin-artesunate (OART), which exhibits substantial bioactivity in vitro and vivo, and we verify its feasibility in cancer immunotherapy. For mechanism, OART induces cytoplasmic and mitochondrial LPO to promote tumor ferroptosis, via inhibiting glutathione-mediated ferroptosis defense system, enhancing iron-dependent Fenton reaction, and initiating mitochondrial LPO. The destroyed mitochondrial membrane potential, disturbed mitochondrial fusion and fission, as well as downregulation of dihydroorotate dehydrogenase mutually contribute to mitochondrial LPO. Consequently, OART enhances tumor immunogenicity by releasing damage associated molecular patterns and promoting antigen presenting cells maturation, thereby transforming tumor environment from immunosuppressive to immunosensitive. By establishing in vivo model of tumorigenesis and lung metastasis, we verified that OART improves the systematic immune response. In summary, OART has enormous clinical potential for ferroptosis-based cancer therapy in translational medicine.

11.
Inflammopharmacology ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758516

RESUMO

Small intestine damage caused by diclofenac is called diclofenac enteropathy. Berberine (BBR), a class of isoquinoline alkaloids derived from Berberis vulgaris and Phellodendron amurense, is widely used in intestinal diseases. The present study evaluated the protective effect of BBR on the intestinal mucosal mechanical barrier in diclofenac enteropathy and its possible action mechanism. The in vitro animal experiment revealed that BBR downregulated the expression of long non-coding RNA H19 (lncRNA H19) in the small intestine and exosomes. In the co-culture experiment involving exosomes and intestinal epithelial cell-6 (IEC-6) cells, the results of qRT-PCR, western blotting, and immunofluorescence assays demonstrated that the elevated expression of lncRNA H19 in the small intestine, conveyed via exosomes derived from the diclofenac group, suppressed the expression levels of autophagy-associated protein 5 (Atg 5) and light chain 3 (LC 3), as well as and the tight junction (TJ) proteins zonula occludens-1 (ZO-1), claudin-1, and occluding, relative to the control group. BBR treatment attenuated exosomal lncRNA H19 levels, upregulated the expression of Atg5 and LC3 expression, enhanced TJ protein expression, and increased the light chain 3 (LC3)-II/LC3-I ratio. These findings significantly elucidated that BBR promoted the restoration of autophagy in IECs by inhibiting exosomal lncRNA H19, thereby mitigating the impairment of the intestinal mucosal mechanical barrier function in diclofenac enteropathy. The process involving exosomal lncRNA H19 regulating autophagy, thereby affecting the intestinal mucosal mechanical barrier, offers a novel perspective for the application of BBR in the treatment of diclofenac enteropathy.

12.
Sci Total Environ ; 933: 173208, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750758

RESUMO

In this study, 3,4,3',4'-tetrachlorobiphenyl (PCB77) contaminated soil was remediated by a fluidization bed dielectric barrier discharge (DBD) reactor and a fixed bed DBD reactor. The fluidized bed reactor could attain superior removal efficiency of PCB77 under same experimental parameters. In-situ discharge mode was more conducive to the degradation of PCB77 than ex-situ discharge mode due to short-lived active species existing in in-situ discharge. The influence of experimental parameters in the fluidized bed DBD reactor on the degradation of PCB77 were discussed such as electric features, gas features, soil features and initial PCB77 concentration. PCB77 removal efficiency in air discharge could reach 88.5 % after 8 min under the alkaline condition. Optical emission spectroscopy (OES) and quench tests showed that reactive oxygen species (ROS) and reactive nitrogen species (RNS) were generated in the discharge system and they both played a vital role in the degradation of PCB77. Scanning electron microscopy (SEM) results demonstrated that discharge had little effect on the morphology of soil particles. Energy dispersive spectrometer (EDS), ion chromatography (IC), and total organic carbon (TOC) results showed that the DBD could effectively mineralize and dechlorinate PCB77. The possible degradation pathway of PCB77 was inferred at the end based on the degradation products determined by gas chromatography-mass spectrometry (GC-MS).

13.
Sci Rep ; 14(1): 10397, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710758

RESUMO

I/II/III mixed mode fractures of intersecting joint fissures often occur in natural rock masses, and jointed rock masses are prone to rockbursts in deep underground engineering when subjected to long-term crustal stresses. However, most studies of the mechanical mechanisms of these intersected joints have been conducted by simplifying two-dimensional joint model tests. Furthermore, the fracture mechanisms of two-dimensional intersected joints under tension and compression are completely different from those of three-dimensional joints. This paper presents a novel prefabricated specimen with combinations of intersecting joints capable of detecting the failure behaviours of rock I/II/III mixed mode fractures under creep loading. Uniaxial compression and multistage creep tests are performed on prefabricated sandstone specimens with intersecting joints of 0°/0°, 0°/30°, 0°/60°, and 0°/90°. The experimental results show that with the increase in the number of prefabricated intersecting joints, the uniaxial compressive strength and elastic modulus values of the sandstone specimens gradually decrease. In addition, the sandstone specimens experience relatively few AE events and minor axial strain variations in the first creep stage and the second creep stage of the multistage creep test. The axial strain increases sharply due to the sharp increase in the number of AE events in the third creep stage. The 0°/60° sandstone specimen undergoes accelerated creep failure, resulting in mixed X-shaped tensile‒shear rupture. The RA value is high based on the quantification of the creeping cracks using the acoustic emission parameters of the rise angle (RA) and average frequency (AF). The AF values of the 0°/0°, 0°/30°, and 0°/90° sandstone specimens are high. The experimental results show that a larger joint intersection angle leads to greater mutual restraints and greater effects of prefabricated crack propagation in the rock specimens, thus increasing the final failure strength. Finally, based on the acoustic emission count, a characteristic variable D suitable for characterizing the creep damage evolution of a joint rock mass is established. The findings of this paper can facilitate an effective understanding of the creep effect of I/II/III mixed mode fracture and its micromechanism. The research results will have a certain reference value for the detection and risk mitigation of instantaneous and time-delayed rockbursts.

14.
Heliyon ; 10(9): e29797, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707329

RESUMO

Introduction: Non-steroid anti-inflammatory drugs (NSAIDs) are a class of prescription drugs with antipyretic, analgesic, anti-inflammatory, and antiplatelet effects. However, long-term use of NSAIDs will disrupt the intestinal mucosal barrier, causing erosion, ulcers, bleeding, and even perforation. Pure total flavonoids from Citrus (PTFC) is extracted from the dried peel of Citrus, showing a protective effect on intestinal mucosal barrier with unclear mechanisms. Methods: In the present study, we used diclofenac (7.5 mg kg-1, i.g.) to induce a rat model of NSAIDs-related intestinal lesions. PTFC (50, 75, 100 mg·kg-1 d-1, i.g.) was administered 9 days before the initial diclofenac administration, followed by co-administration on the last 5 days. Exosomes were identified by western blotting and transmission electron microscopy (TEM), and then co-cultured with IEC-6 cells. The expression of long non-coding RNA (lncRNA) H19, autophagy-related 5 (Atg5), ZO-1, Occludin, and Claudin-1 were detected by quantitative real-time PCR (qRT-PCR). The expression of light chain 3 (LC3)-I, LC3-II, ZO-1, Occludin and Claudin-1 proteins was tested by western blotting. The localization of both exosomes and autophagosomes was examined by immunofluorescent technique. Results: The treatment of PTFC attenuated intestinal mucosal mechanical barrier function disturbance in diclofenac-induced NSAIDs rats. IEC-6 cells co-cultured with NSAIDs rats-derived exosomes possessed the lowest levels of protective autophagy, and severe intestinal barrier injuries. Cells co-cultured with the exosomes extracted from rats administrated PTFC exhibited an improvement of autophagy and intestinal mucosal mechanical barrier function. The prevention effect was proportional to the concentration of PTFC administered. Conclusion: PTFC ameliorated NSAIDs-induced intestinal mucosal injury by down-regulating exosomal lncRNA H19 and promoting autophagy.

15.
Phytomedicine ; 129: 155614, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38692078

RESUMO

BACKGROUND: Cellular senescence is an emerging hallmark of cancers, primarily fuels cancer progression by expressing senescence-associated secretory phenotype (SASP). Caveolin-1 (CAV1) is a key mediator of cell senescence. Previous studies from our group have evidenced that the expression of CAV1 is downregulated by Celastrol (CeT). PURPOSE: To investigate the impact of CeT on cellular senescence and its subsequent influence on post-senescence-driven invasion, migration, and stemness of clear cell renal cell carcinoma (ccRCC). STUDY DESIGN AND METHODS: The expression levels of CAV1, canonical senescence markers, and markers associated with epithelial-mesenchymal transition (EMT) and stemness in clinical samples were assessed through Pearson correlation analysis. Senescent cell models were induced using DOX, and their impact on migration, invasion, and stemness was evaluated. The effects of CeT treatment on senescent cells and their pro-tumorigenic effects were examined. Subsequently, the underlying mechanism of CeT were explored using lentivirus transfection and CRISPR/Cas9 technology to silence CAV1. RESULTS: In human ccRCC clinical samples, the expression of the canonical senescence markers p53, p21, and p16 are associated with ccRCC progression. Senescent cells facilitated migration, invasion, and enhanced stemness in both ccRCC cells and ccRCC tumor-bearing mice. As expected, CeT treatment reduced senescence markers (p16, p53, p21, SA-ß-gal) and SASP factors (IL6, IL8, CXCL12), alleviating cell cycle arrest. However, it did not restore the proliferation of senescent cells. Additionally, CeT suppressed senescence-driven migration, invasion, and stemness. Further investigations into the underlying mechanism demonstrated that CAV1 is a critical mediator of cell senescence and represents a potential target for CeT to attenuate cellular senescence. CONCLUSIONS: This study presents a pioneering investigation into the intricate interplay between cellular senescence and ccRCC progression. We unveil a novel mechanism of CeT to mitigate cellular senescence by downregulating CAV1, thereby inhibiting the migration, invasion and stemness of ccRCC driven by senescent cells. These findings provide valuable insights into the underlying mechanisms of CeT and its potential as a targeted therapeutic approach for alleviating the aggressive phenotypes associated with senescent cells in ccRCC.

16.
BMJ Open ; 14(5): e083228, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772899

RESUMO

INTRODUCTION: Patients with liver cancer are susceptible to experiencing a decline in muscle mass and function, which can lead to physical frailty and have a negative impact on prognosis. However, there is currently a lack of physical activity interventions specifically tailored for these patients. Therefore, we have developed a modular multimodal hospital-home chain physical activity rehabilitation programme (3M2H-PARP) designed specifically for patients with liver cancer undergoing transarterial chemoembolisation (TACE). We aim to validate the effectiveness and feasibility of this programme through a randomised controlled trial (RCT). METHODS AND ANALYSIS: 3M2H-PARP RCT will compare a 12-week, modular, multimodal physical activity rehabilitation programme that includes supervised exercise in a hospital setting and self-management exercise at home. The programmes consist of aerobic, resistance, flexibility and balance exercise modules, and standard survivorship care in a cohort of liver cancer survivors who have undergone TACE. The control group will receive standard care. A total of 152 participants will be randomly assigned to either the 3M2H-PARP group or the control group. Assessments will be conducted at three time points: baseline, after completing the intervention and a 24-week follow-up visit. The following variables will be evaluated: liver frailty index, Functional Assessment of Cancer Therapy-Hepatobiliary subscale, Cancer Fatigue Scale, Pittsburgh Sleep Quality Index, Hospital Anxiety and Depression Scale and physical activity level. After the completion of the training programme, semi-structured interviews will be conducted with participants from the 3M2H-PARP group to investigate the programme's impact on their overall well-being. SPSS V.26.0 software will be used for statistical analyses. ETHICS AND DISSEMINATION: Ethical approval has been granted by the Jiangnan University School of Medicine Research Ethics Committee. The findings will be disseminated through publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: ChiCTR2300076800.


Assuntos
Terapia por Exercício , Neoplasias Hepáticas , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Terapia por Exercício/métodos , Neoplasias Hepáticas/reabilitação , Qualidade de Vida , Quimioembolização Terapêutica/métodos , Feminino , Exercício Físico , Masculino
17.
Mol Ther Nucleic Acids ; 35(2): 102170, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38560422

RESUMO

Efficient germline mtDNA editing is required to construct disease-related animal models and future gene therapy. Recently, the DddA-derived cytosine base editors (DdCBEs) have made mitochondrial genome (mtDNA) precise editing possible. However, there still exist challenges for editing some mtDNA sites in germline via zygote injection, probably due to the suspended mtDNA replication during preimplantation development. Here, we introduce a germline mtDNA base editing strategy: injecting DdCBEs into oocytes of secondary follicles, at which stage mtDNA replicates actively. With this method, we successfully observed efficient G-to-A conversion at a hard-to-edit site and also obtained live animal models. In addition, for those editable sites, this strategy can greatly improve the base editing efficiency up to 3-fold, which is more than that in zygotes. More important, editing in secondary follicles did not increase more the risk of off-target effects than that in zygotes. This strategy provides an option to efficiently manipulate mtDNA sites in germline, especially for hard-to-edit sites.

18.
Acta Pharm Sin B ; 14(4): 1742-1758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572099

RESUMO

Mitochondrial membrane remodeling can trigger the release of mitochondrial DNA (mtDNA), leading to the activation of cellular oxidative stress and immune responses. While the role of mitochondrial membrane remodeling in promoting inflammation in hepatocytes is well-established, its effects on tumors have remained unclear. In this study, we designed a novel Pt(IV) complex, OAP2, which is composed of oxaliplatin (Oxa) and acetaminophen (APAP), to enhance its anti-tumor effects and amplify the immune response. Our findings demonstrate that OAP2 induces nuclear DNA damage, resulting in the production of nuclear DNA. Additionally, OAP2 downregulates the expression of mitochondrial Sam50, to promote mitochondrial membrane remodeling and trigger mtDNA secretion, leading to double-stranded DNA accumulation and ultimately synergistically activating the intracellular cGAS-STING pathway. The mitochondrial membrane remodeling induced by OAP2 overcomes the limitations of Oxa in activating the STING pathway and simultaneously promotes gasdermin-D-mediated cell pyroptosis. OAP2 also promotes dendritic cell maturation and enhances the quantity and efficacy of cytotoxic T cells, thereby inhibiting cancer cell proliferation and metastasis. Briefly, our study introduces the first novel small-molecule inhibitor that regulates mitochondrial membrane remodeling for active immunotherapy in anti-tumor research, which may provide a creative idea for targeting organelle in anti-tumor therapy.

19.
Inflamm Bowel Dis ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557865

RESUMO

Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease (CD), without specific antifibrotic drugs, which usually relies on surgical intervention. The transcription factor XBP1, a key component of endoplasmic reticulum (ER) stress, is required for degranulation of mast cells and linked to PAR2 activation and fibrosis. Many studies have confirmed that naringin (NAR) can inhibit ER stress and reduce organ fibrosis. We hypothesized that ER stress activated the PAR2-induced epithelial-mesenchymal transition process by stimulating mast cell degranulation to release tryptase and led to intestinal fibrosis in CD patients; NAR might play an antifibrotic role by inhibiting ER stress-induced PAR2 activation. We report that the expression levels of XBP1, mast cell tryptase, and PAR2 are upregulated in fibrotic strictures of CD patients. Molecular docking simulates the interaction of NAR and spliced XBP1. ER stress stimulates degranulation of mast cells to secrete tryptase, activates PAR2-induced epithelial-mesenchymal transition process, and promotes intestinal fibrosis in vitro and vivo experiments, which is inhibited by NAR. Moreover, F2rl1 (the coding gene of PAR2) deletion in intestinal epithelial cells decreases the antifibrotic effect of NAR. Hence, the ER stress-mast cell tryptase-PAR2 axis can promote intestinal fibrosis, and NAR administration can alleviate intestinal fibrosis by inhibiting ER stress-induced PAR2 activation.


Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease. The endoplasmic reticulum stress­mast cell tryptase­PAR2 axis promotes intestinal fibrosis, and naringin administration alleviates intestinal fibrosis by inhibiting endoplasmic reticulum stress­induced PAR2 activation.

20.
J Control Release ; 369: 545-555, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588825

RESUMO

Severe burn injuries with massive dermal loss are often underestimated despite their significant impact on morbidity and mortality. Resembling the natural extracellular matrix (ECM), hyaluronic acid (HA)-based dressings have been extensively explored as suitable candidates for burn wound treatment. However, native HA hydrogel's limitations, such as low mechanical strength, rapid degradation, and uncontrollable drug delivery, hinder its efficacy, especially for full-thickness burns requiring injectable hydrogels with robust antibacterial and angiogenic capabilities. Herein, we present a novel multifunctional sequential dual-curing hydrogel system, combining hyperbranched poly(DMA-DMAPMA-PEGDA) (DDP) polymer with thiolated hyaluronic acid (HA-SH). The DDP copolymer, featuring multi-vinyls and catechol functionalities, facilitates two curing reactions taking place sequentially with HA-SH under physiological conditions, balancing convenient injection with the mechanical strength essential for effective wound management. Furthermore, the resulting DDP/HA hydrogels demonstrate enhanced therapeutic attributes, including intrinsic angiogenic and antimicrobial effects, setting them as promising dressing options for deep burn wound therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA