Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931456

RESUMO

Neuropathic pain (NP) is a common type of chronic pain caused by a lesion or disease of the somatosensory nervous system. This condition imposes a considerable economic burden on society and patients. Daphnetin (DAP) is a natural product isolated from a Chinese medicinal herb with various pharmacological activities, such as anti-inflammatory and analgesic properties. However, the underlying mechanisms of these effects are not fully understood. In the present study, we aimed to investigate DAP's anti-inflammatory and analgesic effects and explore the underlying mechanisms of action. The NP model was established as chronic constrictive injury (CCI) of the sciatic nerve, and pain sensitivity was evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal threshold (TWT). The activation of microglia in the spinal dorsal horn was measured via immunofluorescence staining. Protein levels were measured using a western blot assay. Using a mass-spectrometry proteomics platform and an LC-MS/MS-based metabolomics platform, proteins and metabolites in spinal cord tissues were extracted and analyzed. DAP treatment ameliorated the MWT and TWT in CCI rats. The expression of IL-1ß, IL-6, and TNF-α was inhibited by DAP treatment in the spinal cords of CCI rats. Moreover, the activation of microglia was suppressed after DAP treatment. The elevation in the levels of P2X4, IRF8, IRF5, BDNF, and p-P38/P38 in the spinal cord caused by CCI was inhibited by DAP. Proteomics and metabolomics results indicated that DAP ameliorated the imbalance of glycerophospholipid metabolism in the spinal cords of CCI rats. DAP can potentially ameliorate NP by regulating microglial responses and glycerophospholipid metabolism in the CCI model. This study provides a pharmacological justification for using DAP in the management of NP.

2.
Biomed Opt Express ; 15(5): 3366-3381, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855705

RESUMO

A surface-enhanced Raman scattering (SERS) detection platform was constructed based on Au nano-dodecahedrons (AuNDs) functionalized with nucleic acid aptamer-specific binding and self-assembly techniques. SERS labels were prepared by modifying Raman signaling molecules and complementary aptamer chains and were bound on the aptamer-functionalized AuNDs array. Using this protocol, the limits of detection (LODs) of miR-21 and miR-18a in the serum were 6.8 pM and 7.6 pM, respectively, and the detection time was 5 min. Additionally, miR-21 and miR-18a were detected in the serum of a mouse model of colorectal cancer. The results of this protocol were consistent with quantitative real-time polymerase chain reaction (qRT-PCR). This method provides an efficient and rapid method for the simultaneous testing of miRNAs, which has great potential clinical value for the early detection of colorectal cancer (CRC).

3.
Chemosphere ; 358: 142277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719118

RESUMO

Peracetic acid (PAA) has garnered significant attention as a novel disinfectant owing to its remarkable oxidative capacity and minimal potential to generate byproducts. In this study, we prepared a novel catalyst, denoted as cobalt modified nitrogen-doped carbon nanotubes (Co@N-CNTs), and evaluated it for PAA activation. Modification with cobalt nanoparticles (∼4.8 nm) changed the morphology and structure of the carbon nanotubes, and greatly improved their ability to activate PAA. Co@N-CNTs/PAA catalytic system shows outstanding catalytic degradation ability of antiviral drugs. Under neutral conditions, with a dosage of 0.05 g/L Co@N-CNT-9.8 and 0.25 mM PAA, the removal efficiency of acyclovir (ACV) reached 98.3% within a mere 10 min. The primary reactive species responsible for effective pollutant degradation were identified as acetylperoxyl radicals (CH3C(O)OO•) and acetyloxyl radicals (CH3C(O)O•). In addition, density functional theory (DFT) proved that Co nanoparticles, as the main catalytic sites, were more likely to adsorb PAA and transfer more electrons than N-doped graphene. This study explored the feasibility of PAA degradation of antiviral drugs in sewage, and provided new insights for the application of heterogeneous catalytic PAA in environmental remediation.


Assuntos
Antivirais , Cobalto , Nanotubos de Carbono , Nitrogênio , Ácido Peracético , Nanotubos de Carbono/química , Nitrogênio/química , Cobalto/química , Ácido Peracético/química , Catálise , Antivirais/química , Poluentes Químicos da Água/química , Aciclovir/química , Adsorção
4.
Xenobiotica ; 54(4): 201-210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563808

RESUMO

The novel anti-Parkinson disease drug, FLZ, had a complicated drug absorption and metabolise process reported in single-dose studies. A multi-peak absorption peak phenomenon was found.This study focused on the multi-dose pharmacokinetics (PK) characteristics of FLZ, T1, and T2 in cynomolgus monkeys and raised discussion on its multi-peak absorption situation. Different doses of FLZ ranging from 75 to 300 mg/kg were administered orally to 16 cynomolgus monkeys. The whole treatment period lasted for 42 days with FLZ once a day.The primary metabolites of FLZ were Target1 (T1) and Target2 (T2), which had plasma exposure (calculated as AUC0-24, day 42) approximately 2 and 10 times higher than the parent drug. The proportion of plasma exposure increase was lower than the proportion of dose increase in FLZ, T1, and T2.Gender influenced its exposure (AUC0-24) with approximately 3-fold higher in males than females. There was no significant accumulation of T1 and T2. Enterohepatic Circulation (EHC) and gastrointestinal (GI) tract absorption may be involved in the mechanism of multi-peak characteristics.


Assuntos
Antiparkinsonianos , Macaca fascicularis , Animais , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/administração & dosagem , Masculino , Feminino , Administração Oral , Relação Dose-Resposta a Droga
5.
Heliyon ; 9(11): e21635, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027703

RESUMO

Background: Xuelian injection (XI), a classic preparation extracted from Saussureae Involucratae Herba, has been clinically used to manage rheumatoid arthritis (RA) for nearly twenty years in China. However, the underlying anti-RA mechanism of XI remains unclear. In this study, complete Freund's adjuvant (CFA)-induced acute arthritic model was used to examine the anti-RA effects of XI in vivo. The molecular mechanisms of this action were further investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: XI and XI freeze dried powder were characterized by UPLC analysis. CD68 and TLR4 expression in the ankle joints was measured by immunohistochemistry. The secretion of inflammatory mediators was detected by ELISA. The expression levels of TLR4 involved components were measured by Western blotting. The localization of transcription factors was measured by immunofluorescence assay. Results: XI treatment ameliorated arthritic symptoms induced by CFA in the ankle joints of rats. The serum levels of inflammatory mediators, including TNF-α, MCP-1, and Rantes were decreased by XI treatment. The elevation of CD68 and TLR4 levels in ankle joints caused by CFA was suppressed by XI treatment. Moreover, XI treatment inhibited the secretion of nitric oxide and prostaglandin E2 in LPS-treated RAW264.7 macrophages. The expression of their enzymes iNOS and COX-2 was also decreased after XI treatment. The production of inflammatory mediators, including TNF-α, IL-6, IL-1ß, MCP-1, MIP-1α, and Rantes was reduced by XI treatment in LPS-stimulated RAW264.7 cells. The phosphorylation of p38, JNK, ERK, TBK1, IKKα/ß, IκB, p65, c-Jun, and IRF3 was reduced after XI treatment. Additionally, the expression levels of nuclear proteins of p65, c-Jun, and IRF3 were inhibited by XI treatment. Conclusions: Taken together, XI possesses potential anti-RA effect and the underlying mechanism may be closely associated with the inhibition of TLR4 signaling. Our findings provide further pharmacological justifications for the clinical use of XI in RA treatment.

6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37259390

RESUMO

Neuropathic pain (NP) is a common pain disease that seriously affects the quality of life and physical and mental health of patients. Daphnetin is extracted from the Daphne giraldii Nitsche and has the structure of 7,8-dihydroxy coumarin. As a natural product, daphnetin displays a wide range of pharmacological activities, such as analgesia and anti-inflammatory activities, but whether it is able to improve NP through anti-inflammatory effects is unknown. Therefore, this paper intends to investigate the mechanism of daphnetin in improving NP rats affected by the intrathecal injection of tumor necrosis factor-α (TNF-α) from the perspective of anti-inflammation. Our results showed that daphnetin significantly improved hyperalgesia in NP rats. Daphnetin inhibited the activation and polarization of glial cells and neurons in the spinal cord of NP rats and reduced the expression of mRNA and protein of inflammatory factors and chemokine pairs in the spinal cord. Daphnetin inhibited the polarization of human microglia cell 3 (HMC3) cells and human glioma cells (U251) cells toward M1 microglia and A1 astrocytes, respectively, and induced the conversion of M1 microglia and A1 astrocytes to M2 microglia and A2 astrocytes, respectively. In conclusion, daphnetin ameliorates NP by inhibiting the expression of inflammatory factors and chemokines and the polarization of glial cells in the spinal cord of NP rats. This study provides a theoretical basis for the treatment of NP with daphnetin to expand the clinical application of daphnetin.

7.
Pharm Biol ; 61(1): 746-754, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37177984

RESUMO

CONTEXT: Daphnetin is a natural product with anti-inflammatory, antioxidant, and neuroprotective properties. Reports have found that it has a strong analgesic effect; however, its analgesic mechanism is unknown. OBJECTIVE: We explored the effect and mechanism of daphnetin on neuropathic pain (NP). MATERIALS AND METHODS: The rat model of NP was established by ligation of the sciatic nerve. Male Sprague-Dawley rats were divided into six groups: Control, Model, Sham, morphine (0.375 mg/kg), and daphnetin (0.0625 and 0.025 mg/kg). Rats were intrathecally injected with drugs or normal saline once daily for three days. Hyperalgesia was evaluated by mechanical withdrawal threshold (MWT) and thermal withdrawal threshold (TWT). Protein levels were detected using ELISA, immunofluorescence, and western blotting. RESULTS: Compared to the Model group, daphnetin improved TWT (46.70 °C vs. 42.20 °C) and MWT (45.60 g vs. 23.60 g), reduced the expression of interleukin-1ß (0.99 ng/g vs. 1.42 ng/g), interleukin-6 (0.90 ng/g vs. 1.52 ng/g), and tumor necrosis factor-α (0.93 ng/g vs. 1.52 ng/g) in the sciatic nerve. Daphnetin decreased the expression of toll-like receptor 4 (TLR4) (0.47-fold), phosphorylated inhibitor of NF-κB (p-IKBα) (0.29-fold), nuclear factor kappaB (NF-κB) (0.48-fold), glial fibrillary acidic protein (GFAP) (0.42-fold), CXC chemokine ligand type 1 (CXCL1) (0.84-fold), CXC chemokine receptor type 2 (CXCR2) (0.78-fold) in the spinal cord. DISCUSSION AND CONCLUSIONS: Daphnetin alleviates NP by inhibiting inflammation and astrocyte activation in the spinal cord, providing theoretical support for the extensive clinical treatment of NP.


Assuntos
NF-kappa B , Neuralgia , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medula Espinal , Neuralgia/tratamento farmacológico , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/farmacologia
8.
Phytomedicine ; 114: 154805, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37054485

RESUMO

BACKGROUND: Multiflorin A (MA) is a potential active ingredient of traditional herbal laxative, Pruni semen, with unusual purgative activity and an unclear mechanism, and inhibiting intestinal glucose absorption is a promising mechanism of novel laxatives. However, this mechanism still lacks support and a description of basic research. PURPOSE: This study aimed to determine the main contribution of MA to the purgative activity of Pruni semen and elucidate the effect intensity, characteristics, site, and mechanism of MA in mice, and determine the novel mechanism of traditional herbal laxatives from the perspective of intestinal glucose absorption. METHODS: We induced diarrhoea in mice by administering Pruni semen and MA, and the defecation behaviour, glucose tolerance, and intestinal metabolism were analysed. The effects of MA and its metabolite on peristalsis of the intestinal smooth muscle were evaluated using an intestinal motility assay in vitro. Intestinal tight junction proteins, aquaporins, and glucose transporters expression were analysed using immunofluorescence; gut microbiota and faecal metabolites were analysed using 16S rRNA and liquid chromatography-mass spectrometry. RESULTS: MA administration (20 mg/kg) induced watery diarrhoea in over half of the experimental mice. The activity of MA in lowering peak postprandial glucose levels was synchronous with purgative action, with the acetyl group being the active moiety. MA was metabolised primarily in the small intestine, where it decreased sodium-glucose cotransporter-1, occludin, and claudin1 expression, then inhibited glucose absorption, resulting in a hyperosmotic environment. MA also increased the aquaporin3 expression to promote water secretion. Unabsorbed glucose reshapes the gut microbiota and their metabolism in the large intestine and the increasing gas and organic acid promoted defecation. After recovery, the intestinal permeability and glucose absorption function returned, and the abundance of probiotics such as Bifidobacterium increased. CONCLUSION: The purgative mechanism of MA involves inhibiting glucose absorption, altering permeability and water channels to promote water secretion in the small intestine, and regulating gut microbiota metabolism in the large intestine. This study is the first systematic experimental study on the purgative effect of MA. Our findings provide new insight into the study of novel purgative mechanisms.


Assuntos
Catárticos , Glucose , Camundongos , Animais , Catárticos/farmacologia , Glucose/farmacologia , Laxantes/farmacologia , RNA Ribossômico 16S , Permeabilidade , Diarreia , Água , Absorção Intestinal
9.
J Ethnopharmacol ; 310: 116418, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36990301

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yinzhihuang granule (YZHG) has liver protective effect and can be used for clinical treatment of non-alcoholic fatty liver disease (NAFLD), but its material basis and mechanism need to be further clarified. AIM OF THE STUDY: This study aims to reveal the material basis and mechanism of YZHG treating NAFLD. MATERIALS AND METHODS: Serum pharmacochemistry were employed to identify the components from YZHG. The potential targets of YZHG against NAFLD were predicted by system biology and then preliminarily verified by molecular docking. Furthermore, the functional mechanism of YZHG in NAFLD mice was elucidated by 16S rRNA sequencing and untargeted metabolomics. RESULTS: From YZHG, 52 compounds were identified, of which 42 were absorbed into the blood. Network pharmacology and molecular docking showed that YZHG treats NAFLD with multi-components and multi-targets. YZHG can improve the levels of blood lipids, liver enzymes, lipopolysaccharide (LPS), and inflammatory factors in NAFLD mice. YZHG can also significantly improve the diversity and richness of intestinal flora and regulate glycerophospholipid and sphingolipid metabolism. Moreover, Western Blot experiment showed that YZHG can regulate liver lipid metabolism and enhance intestinal barrier function. CONCLUSIONS: YZHG may treat NAFLD by improving the disruption of intestinal flora and enhancing the intestinal barrier. This will reduce the invasion of LPS into the liver subsequently regulate liver lipid metabolism and reduce liver inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Fígado
10.
Int J Biol Macromol ; 233: 123502, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736976

RESUMO

A new polysaccharide, named SP800201 with Mw of 2.17 × 105 g/mol, was isolated from Saposhnikoviae Radix. The monosaccharide composition of SP800201 mainly contained Gal, GalA, Ara, and Rha. SP800201 has a core structure containing GalA as the backbone and side chains consisting of GalA, Gal, Ara and Rha. Cell and zebrafish experiments were used to explore the immunomodulatory activity of SP800201. Results of vitro RAW264.7 cell experiments showed that SP800201 could significantly improve the proliferation and phagocytosis of macrophages, and promote the release of NO, TNF-α, IL-1ß, and IL-6. Results of vivo experiments in immunocompromised zebrafish showed that SP800201 could also significantly increase the density of immune cells, the number of macrophages, and reduce NO, TNF-α, IL-1ß, and IL-6. The above results showed that the Saposhnikoviae Radix polysaccharide has certain immunomodulatory activity.


Assuntos
Fator de Necrose Tumoral alfa , Peixe-Zebra , Animais , Camundongos , Interleucina-6 , Polissacarídeos/química , Macrófagos , Células RAW 264.7
11.
Drug Des Devel Ther ; 17: 297-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756190

RESUMO

Purpose: Sichen (SC) formula is a classic prescription of Tibetan medicine. Due to its potential anti-inflammatory effect, the SC formula has been clinically used to treat respiratory diseases for many years in the Chinese Tibet region. The present study aimed to investigate the anti-inflammatory effect of SC and explore the underlying mechanisms. Methods: SC formula was characterized by HPLC analysis. The acute lung injury (ALI) mouse model was induced by direct intratracheal lipopolysaccharide (LPS) instillation, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. Meanwhile, RAW264.7 macrophages were stimulated by LPS. The contents of inflammatory mediators in the culture medium were determined by ELISA. Protein levels were determined by immunohistochemical staining or Western blotting. Nuclear localization of NF-κB, AP-1, and IRF3 was performed using immunofluorescence and Western blotting. Results: In the LPS-induced ALI mouse model, SC treatment suppressed the secretion of inflammatory mediators (TNF-α, IL-6, IL-1ß, MCP-1, MIP-1α, and RANTES) in BALF. SC treatment hindered the recruitment of macrophages. SC treatment also inhibited the expression of CD68, p-p65, and TLR4 in the lung tissue. In the LPS-exposed RAW264.7 cells, the cell viability was not changed up to 400 µg/mL of SC. SC concentration-dependently suppressed the production of nitric oxide, prostaglandin E2, TNF-α, IL-6, MCP-1, MIP-1α, and RANTES in LPS-challenged RAW264.7 cells. The expression levels of iNOS, COX-2, p-p38, p-JNK, p-ERK, p-TBK1, p-IKKα/ß, p-IκB, p-p65, p-c-Jun, and p-IRF3 were decreased after SC treatment. Moreover, the nuclear translocation of p65, c-Jun, and IRF3 was also blocked by SC treatment. Conclusion: SC treatment inhibited the inflammatory responses in LPS-induced ALI mouse model/RAW264.7 macrophages. The underlying mechanism of this action may be closely associated with the suppression of TLR4 signaling pathways. These research findings provide further pharmacological justifications for the medicinal use of SC in the management of respiratory diseases.


Assuntos
Lesão Pulmonar Aguda , Receptor 4 Toll-Like , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/uso terapêutico , Quimiocina CCL3/metabolismo , Interleucina-6 , Lipopolissacarídeos , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Medicina Tradicional Tibetana
12.
Brain Behav ; 13(2): e2868, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36602945

RESUMO

BACKGROUND: Neuropathic pain (NP) caused by the injury or dysfunction of the nervous system is a chronic pain state accompanied by hyperalgesia, and the available clinical treatment is relatively scarce. Hyperalgesia mediated by pro-inflammatory factors and chemokines plays an important role in the occurrence and maintenance of NP. DATA TREATMENT: Therefore, we conducted a systematic literature review of experimental NP (PubMed Medline), in order to find the mechanism of inducing central sensitization and explore the intervention methods of hyperalgesia caused by real or simulated injury. RESULT: In this review, we sorted out the activation pathways of microglia, astrocytes and neurons, and the process of crosstalk among them. It was found that in NP, the microglia P2X4 receptor is the key target, which can activate the mitogen-activated protein kinase pathway inward and then activate astrocytes and outwardly activate neuronal tropomyosin receptor kinase B receptor to activate neurons. At the same time, activated neurons continue to maintain the activation of astrocytes and microglia through chemokines on CXCL13/CXCR5 and CX3CL1/CX3CR1. This crosstalk process is the key to maintaining NP. CONCLUSION: We summarize the further research on crosstalk among neurons, microglia, and astrocytes in the central nervous system, elaborate the ways and connections of relevant crosstalk, and find potential crosstalk targets, which provides a reference for drug development and preclinical research.


Assuntos
Hiperalgesia , Neuralgia , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo , Medula Espinal , Microglia/metabolismo , Astrócitos/metabolismo
13.
Metabolism ; 131: 155200, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405150

RESUMO

BACKGROUND: Schisandrin B (Sch B), which inhibits hepatic steatosis caused by non-alcoholic fatty liver disease (NAFLD), is one of the most active dibenzocyclooctadienes isolated from Schisandra chinensis (Turcz.) Baill with various pharmacological activities. In this study, the role of Sch B-induced autophagy in lipid-lowering activities of Sch B was examined and the underlying mechanisms were elucidated. METHODS: Free fatty acid (FFA)-stimulated HepG2 cells and mouse primary hepatocytes (MPHs) and high-fat diet (HFD)-fed mice were used as NAFLD models. The role of Sch B-induced autophagy in lipid-lowering effects of Sch B was assessed using ATG5/TFEB-deficient cells and 3-methyladenine (3-MA)-treated hepatocytes and mice. RESULTS: Sch B simultaneously active autophagy through AMPK/mTOR pathway and decreased the number of lipid droplets in FFA-treated HepG2 cells and MPHs. Additionally, siATG5/siTFEB transfection or 3-MA treatment mitigated Sch B-induced autophagy and activation of fatty acid oxidation (FAO) and ketogenesis in FFA-treated HepG2 cells and MPHs. Sch B markedly decreased hepatic lipid content and activated the autophagy through AMPK/mTOR pathway in HFD-fed mice. However, the activities of Sch B were suppressed upon 3-MA treatment. Sch B upregulated the expression of key enzymes involved in FAO and ketogenesis, which was mitigated upon 3-MA treatment. Moreover, changes in hepatic lipid components and amino acids may be related to the Sch B-induced autophagy pathway. CONCLUSION: These results suggested that Sch B inhibited hepatic steatosis and promoted FAO by activation of autophagy through AMPK/mTOR pathway. Our study provides novel insights into the hepatic lipophagic activity of Sch B and its potential application in the management of NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Ciclo-Octanos , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/metabolismo , Hepatócitos/metabolismo , Corpos Cetônicos/metabolismo , Lignanas , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Compostos Policíclicos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
Front Pharmacol ; 13: 827668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264960

RESUMO

Although progress has been achieved in the pharmacological activity and toxicity of Radix Polygoni Multiflori (RPM), the chemical basis of its toxicity is still unclear. Here, we performed a multicompound pharmacokinetic analysis and investigated the tissue distribution and excretion characteristics of RPM components after oral administration in rats. The findings demonstrated that the active ingredients of the RPM extract were quickly absorbed after oral administration, with high exposure levels of emodin, 2,3,5,4'-teterahydroxystilbene-2-O-ß-D-glucoside (TSG), citreorosein, torachrysone-8-O-glucoside (TG), emodin-8-O-ß-D-glucoside (EG), and physcion-8-O-ß-D-glucoside (PG). The tissue distributions of emodin, TSG, TG, EG, and PG were high in the liver and kidney. These components were the key contributors to the effectiveness and toxicity of RPM on the liver and kidney. Most of the active ingredients were mainly excreted through feces and bile, while a few were converted into other products in the body and excreted through urine and feces.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34917158

RESUMO

Myocardial ischemia/reperfusion injury is the main cause of increased mortality and disability in cardiovascular diseases. The injury involves many pathological processes, such as oxidative stress, calcium homeostasis imbalance, inflammation, and energy metabolism disorders, and these pathological stimuli can activate endoplasmic reticulum stress. In the early stage of ischemia, endoplasmic reticulum stress alleviates the injury as an adaptive survival response, but the long-term stress on endoplasmic reticulum amplifies oxidative stress, inflammation, and calcium overload to accelerate cell damage and apoptosis. Therefore, regulation of endoplasmic reticulum stress may be a mechanism to improve ischemia/reperfusion injury. Chinese herbal medicine has a long history of clinical application and unique advantages in the treatment of ischemic heart diseases. This review focuses on the effect of Chinese herbal medicine on myocardial ischemia/reperfusion injury from the perspective of regulation of endoplasmic reticulum stress.

16.
Front Pharmacol ; 12: 748500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744728

RESUMO

Diabetes mellitus (DM) and its complications pose a major public health threat which is approaching epidemic proportions globally. Current drug options may not provide good efficacy and even cause serious adverse effects. Seeking safe and effective agents for DM treatment has been an area of intensive interest. As a healing system originating in Tibet, Traditional Tibetan Medicine (TTM) has been widely used by Tibetan people for the prevention and treatment of DM and its complications for hundreds of years. Tibetan Materia Medica (TMM) including the flower of Edgeworthia gardneri (Wall.) Meisn., Phyllanthi Fructus, Chebulae Fructus, Huidouba, and Berberidis Cortex are most frequently used and studied. These TMMs possess hypoglycemic, anti-insulin resistant, anti-glycation, lipid lowering, anti-inflammatory, and anti-oxidative effects. The underlying mechanisms of these actions may be related to their α-glucosidase inhibitory, insulin signaling promoting, PPARs-activating, gut microbiota modulation, islet ß cell-preserving, and TNF-α signaling suppressive properties. This review presents a comprehensive overview of the mode and mechanisms of action of various active constituents, extracts, preparations, and formulas from TMM. The dynamic beneficial effects of the products prepared from TMM for the management of DM and its complications are summarized. These TMMs are valuable materia medica which have the potential to be developed as safe and effective anti-DM agents.

17.
Drug Deliv ; 28(1): 1664-1672, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34338567

RESUMO

The intestinal capillary pathway is the most common way to absorb oral drugs, but for drugs with poor solubility and permeability and high first-pass metabolism, this pathway is very inefficient. Although intestinal lymphatic transport of lipophilic drugs or prodrugs is a promising strategy to improve the oral delivery efficiency of these drugs. The prodrug strategy for modifying compounds with Log P > 5 to promote intestinal lymphatic transport is a common approach. However, transport of poor liposoluble compounds (Log P < 0) through intestinal lymph has not been reported. Herein, triglyceride-mimetic prodrugs of scutellarin were designed and synthesized to promote intestinal lymphatic transport and increase oral bioavailability. Lymphatic transport and pharmacokinetic experiments showed that two prodrugs did promote intestinal lymphatic transport of scutellarin and the relative oral bioavailability was 2.24- and 2.45-fold of scutellarin, respectively. In summary, triglyceride-mimetic prodrugs strategy was used for the first time to study intestinal lymphatic transport of scutellarin with Log P < 0, which could further broaden the application range of drugs to improve oral bioavailability with the assistance of intestinal lymphatic transport.


Assuntos
Apigenina/farmacocinética , Transporte Biológico/fisiologia , Glucuronatos/farmacocinética , Sistema Linfático/fisiologia , Pró-Fármacos/química , Triglicerídeos/química , Administração Oral , Animais , Apigenina/administração & dosagem , Química Farmacêutica , Estabilidade de Medicamentos , Feminino , Glucuronatos/administração & dosagem , Humanos , Ratos , Ratos Sprague-Dawley
18.
Front Endocrinol (Lausanne) ; 12: 618037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040579

RESUMO

Background: Adipose tissue (e.g. white, brown and brite) plays a critical role in modulating energy metabolism. Activating brown adipose tissue (BAT) and inducing browning in white adipose tissue (WAT) has been proposed to be a potential molecular target for obesity treatment. Emodin is a natural anthraquinone derivative that exhibits variety of pharmacologic effects including lowering lipids and regulating glucose utilization. However, the underlying mechanism of action is still unclear. In the present study, we investigated whether emodin could alleviate obesity via promoting browning process in adipose tissue. Methods: C57BL/6J mice were fed with high fat diet to induce obesity. Emodin at the doses of 40 and 80 mg/kg were orally given to obesity mice for consecutive 6 weeks. Parameters including fasting blood glucose, oral glucose tolerance, blood lipids, and the ratios of subcutaneous white adipose tissue (scWAT) or BAT mass to body weight, and morphology of adipose tissue were observed. Besides, the protein expression of uncoupling protein 1 (UCP1) and prohibitin in BAT and scWAT was determined by immunohistochemistry method. Relative mRNA expression of Cd137, transmembrane protein 26 (Tmem26) and Tbx1 in scWAT was analyzed using qRT-PCR. And the protein expression of UCP1, CD36, fatty acid transporter 4 (FATP4), peroxisome proliferator-activated receptor alpha (PPARα) and prohibitin of scWAT and BAT were analyzed using western blotting. In addition, ultra-high-performance liquid chromatography with electrospray ionization tandem mass spectrometry was utilized to detect the small lipid metabolites of scWAT and BAT. Results: Emodin decreased the body weight and food intake in HFD-induced obesity mice, and it also improved the glucose tolerance and reduced the blood lipids. Emodin treatment induced beiging of WAT, and more multilocular lipid droplets were found in scWAT. Also, emodin significantly increased markers of beige adipocytes, e.g. Cd137, Tmem26 and Tbx1 mRNA in scWAT, and UCP1, CD36, FATP4, PPARα and prohibitin protein expression in scWAT and BAT. Furthermore, emodin perturbed the lipidomic profiles in scWAT and BAT of obese mice. Emodin increased total ceramides (Cers), lysophosphatidylcholines (LPCs), lyso-phosphatidylcholines oxygen (LPCs-O), and phosphatidylethanolamines oxygen (PEs-O) species concentration in scWAT. Specifically, emodin significantly up-regulated levels of Cer (34:1), LPC (18:2), LPC-(O-20:2), PC (O-40:7), PE (O-36:3), PE (O-38:6), PE (O-40:6), and sphingolipid (41:0) [SM (41:0)], and down-regulated PC (O-38:0), PE (O-40:4), PE (O-40:5) in scWAT of obesity mice. In terms of lipid matabolites of BAT, the emodin remarkably increased the total PCs levels, which was driven by significant increase of PC (30:0), PC (32:1), PC (32:2), PC (33:4) and PC (38:0) species. In addition, it also increased species of LPCs, e.g. LPC (20:0), LPC (20:1), LPC (22:0), LPC (22:1), LPC (24:0), and LPC (24:1). Especially, emodin treatment could reverse the ratio of PC/PE in HFD-induced obese mice. Conclusions: These results indicated that emodin could ameliorate adiposity and improve metabolic disorders in obese mice. Also, emodin could promote browning in scWAT and activate the BAT activities. In addition, emodin treatment-induced changes to the scWAT and BAT lipidome were highly specific to certain molecular lipid species, indicating that changes in tissue lipid content reflects selective remodeling in scWAT and BAT of both glycerophospholipids and sphingolipids in response to emodin treatment.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Emodina/farmacologia , Transtornos do Metabolismo dos Lipídeos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Obesos , Termogênese/efeitos dos fármacos
19.
J Ethnopharmacol ; 275: 114063, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33813013

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang-Yinhua-Jiedu Granules (FFYH) optimized from a Yin-Qiao-San, as traditional Chinese medicine (TCM), was used to treat influenza and upper respiratory tract infection and was recommended for the prevention and treatment of SARS in 2003 and current COVID-19 in Anhui Province in 2020. AIM OF STUDY: In the clinical studies, FFYH was very effective for the treatment of influenza, but the mechanism of action against influenza A virus remains unclear. In the present study, we investigated the antiviral effect of FFYH against influenza A virus in vitro and vivo. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was investigated for the first time. MATERIALS AND METHODS: CPE inhibition assay and HA assay were used to evaluate the in vitro antiviral effects of FFYH against influenza A virus H1N1, H3N2, H5N1, H7N9 and H9N2. Mice were used to evaluate the antiviral effect of FFYH in vivo with ribavirin and lianhuaqingwen as positive controls. RT-PCR was used to quantify the mRNA transcription of TNF-α, IL-6, IFN-γ, IP10, and IL-1ß mRNA. ELISA was used to examine the expression of inflammatory factors such as TNF-α, IL-6, IFN-γ, IP10, and IL-1ß in sera. The blood parameters were analyzed with auto hematology analyzer. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was also investigated. RESULTS: FFYH showed a broad-spectrum of antiviral activity against H1N1, H3N2, H5N1, H7N9, and H9N2 influenza A viruses. Furthermore, FFYH dose-dependently increased the survival rate, significantly prolonged the median survival time of mice, and markedly reduced lung injury caused by influenza A virus. Also, FFYH significantly improve the sick signs, food taken, weight loss, blood parameters, lung index, and lung pathological changes. Moreover, FFYH could markedly inhibit the inflammatory cytokine expression of TNF-α, IL-6, IFN-γ, IP10, IL-10, and IL-1ß mRNA or protein via inhibition of the TLR7/MyD88/NF-κB signaling pathway in vivo. CONCLUSION: FFYH not only showed a broad-spectrum of anti-influenza virus activity in vitro, but also exhibited a significant protective effect against lethal influenza virus infection in vivo. Furthermore, our results indicated that the in vivo antiviral effect of FFYH against influenza virus may be attributed to suppressing the expression of inflammatory cytokines via regulating the TLR7/MyD88/NF-κB signaling pathway. These findings provide evidence for the clinical treatment of influenza A virus infection with FFYH.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Receptor 7 Toll-Like/metabolismo , Células A549 , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Cães , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/patogenicidade , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais , Replicação Viral/efeitos dos fármacos
20.
ACS Omega ; 6(6): 4495-4505, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33623855

RESUMO

Phlomis brevidentata H.W.Li Radix (PbR) is a rare traditional Tibetan medicine, and it is widely used in the Chinese Tibetan region for the treatment of pharyngitis, pneumonia, and so forth. Nevertheless, there is very little research on its modern pharmacy, and the active ingredients and mechanisms against these diseases remain unknown. In this study, we employed the qualitative analysis and pharmacokinetic based on LC-MS technology and network pharmacology to explore the active ingredients and mechanisms of PbR for treatment of pneumonia. Ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-Q-TOF/MS) methodology was applied to identify the chemical composition of PbR. Meanwhile, a UPLC-MS/MS method was developed to quantify three active constituents (sesamoside, shanzhiside methyl ester, and barlerin) in rat plasma for the pharmacokinetic analysis after oral administration of PbR. Finally, in order to clarify the anti-pneumonia mechanism of this rare Tibetan medicine, a comprehensive network pharmacology strategy was applied. As a result, a total of 23 compounds were identified in PbR, including 14 iridoid glycosides, 7 phenylethanoid glycosides, and 2 other kinds of compounds. Pharmacokinetic studies have shown that the three compounds exhibit extremely similar pharmacokinetic characteristics, possibly due to their highly analogous chemical structure. We speculate that the iridoid glycosides may be the main active component in PbR. Then, the three iridoid glycoside constituents absorbed into blood were subjected to network pharmacology analysis for treatment of pneumonia. Compound-target-disease, gene ontology bioanalysis, KEGG pathway, and other network pharmacology analysis methods were applied to reveal that five main targets of the three iridoid glycosides, namely, GAPDH, ALB, MAPK1, AKT1, and EGFR, were significant in the regulation of the above bioprocesses and pathways. These results provide a basis for elucidating the bioactive compounds and the pharmacological mechanisms of P. brevidentata H.W.Li radix under clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA