Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
1.
ACS Appl Bio Mater ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968606

RESUMO

Cerium oxide (CeO2-x) performs well in photothermal and catalytic properties due to its abundance of oxygen vacancies. Based on this, we designed a thermosensitive therapeutic nanoplatform to achieve continuous circular drug release in tumor. It can solve the limitation caused by insufficient substrate in the process of tumor treatment. Briefly, CeO2-x and camptothecin (CPT) were wrapped in an agarose hydrogel, which could be melted by the photothermal effect of CeO2-x. At the same time, the local temperature increase provided photothermal treatment, which could induce the apoptosis of tumor cell. After that, CPT was released to damage the DNA in tumor cells to realize chemical treatment. In addition, CPT could active nicotinamide adenine dinucleotide oxidase to react with O2 to increase the intracellular H2O2. After that, the exposed CeO2-x could catalyze H2O2 to generate cytotoxic reactive oxygen species for chemodynamic therapy. More importantly, CeO2-x could catalyze H2O2 to produce O2, which could combine with the catalytic action of CPT to construct a substrate self-cycling nanoenzyme system. Overall, this self-cycling nanoplatform released hypoxia in the tumor microenvironment and built a multimode tumor treatment, which achieved an ideal antitumor affect.

2.
J Chromatogr A ; 1730: 465113, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38959656

RESUMO

Ionic covalent organic frameworks with both crystallinity and charged sites have attracted significant attention from the scientific community. The versatile textural structures, precisely defined channels, and abundant charged sites of ionic COFs offer immense potential in various areas such as separation, sample pretreatment, ion conduction mechanisms, sensing applications, catalytic reactions, and energy storage systems. This review presents a comprehensive overview of facile preparation methods for ionic covalent organic frameworks (iCOFs), along with their applications in food sample pretreatment techniques such as solid-phase extraction (SPE), magnetic solid-phase extraction (MSPE), and dispersive solid-phase extraction (DSPE). Furthermore, it highlights the extensive utilization of iCOFs in detecting various food contaminants including pesticides, contaminants from food packaging, veterinary drugs, perfluoroalkyl substances, and poly-fluoroalkyl substances. Specifically, this review critically discusses the limitations, challenges, and future prospects associated with employing iCOF materials to ensure food safety.

3.
Chem Commun (Camb) ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994726

RESUMO

We pioneered an angle-adjustable photonic crystal fluorescence platform (APC-Fluor) that integrates PCs, an angular resolution spectrometer and a strategically aligned laser source. This configuration, featuring a coaxial rotating swing arm, allows for precise control over the angles of incidence and emission. The presence of photonic crystal microcavities facilitates the dispersion of fluorescent materials and promotes the transition of electrons from the excited state to the lowest vibrational energy level. The optical resonance effect triggered by modulating the alignment of the reflection peaks of the photonic crystals with the emission peaks of the fluorescent materials can significantly enhance the fluorescence intensity. Compared with the single BSA-AuNCs, the optimized fluorescence intensity can be significantly increased by 11.9-fold. The APC-Fluor system showcases rapid and highly sensitive detection capabilities for oxytetracycline (OTC), exhibiting a response across a concentration range from 2 to 1 × 104 nM and achieving a notably low detection limit of 1.03 nM.

4.
J Environ Manage ; 366: 121877, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018860

RESUMO

Sulfur-driven autotrophic denitrification (S0dAD) was employed to remove residual nitrogen from the biological effluent of landfill leachate after partial nitrification and denitrification pretreatment. The performance of S0dAD were assessed with various NOx--N (NO2--N and NO3--N) loadings over a 185-day operational period. The results demonstrated that a notable NOx--N removal efficiency of 97.8 ± 2.0% was achieved under nitrogen removal rates of 0.12 ± 0.02 kg N/(m3· d), leading to total nitrogen concentrations of 8.6 ± 3.8 mg/L in the effluent. Batch experiments revealed competitive utilization of nitrogenous electron acceptors, with NO2--N demonstrating 2-4 times higher denitrification rates than NO3--N under coexistence conditions. Genus-level microbial community identified that Thiobacillus and Sulfurovum was highly enriched with as key denitrifying bacteria in the S0dAD system. These findings provide insights for advanced nitrogen removal coupling S0dAD with partial nitrification and denitrification process for landfill leachate treatment.

5.
Anal Chem ; 96(28): 11581-11587, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38951996

RESUMO

Ferroptosis is an iron-dependent programmed cell death that is characterized by the dysregulation of lipid reactive oxygen species (ROS) production, causing abnormal changes in hypochlorous acid (HClO) levels in lysosomes. Super-resolution imaging can observe the fine structure of the lysosome at the nanometer level; therefore, it can be used to detect lysosome HClO levels during ferroptosis at the suborganelle level. Herein, we utilize a ratiometric fluorescent probe, SRF-HClO, for super-resolution imaging of lysosome HClO. Structured-illumination microscopy (SIM) improves the accuracy of lysosome targeting and enables the probe SRF-HClO to be successfully applied to rapidly monitor the up-regulated lysosome HClO at the nanoscale during inflammation and ferroptosis. Importantly, the probe SRF-HClO can also detect HClO changes in inflammatory and ferroptosis mice and evaluate the inhibitory effect of ferroptosis on mice tumors.


Assuntos
Ferroptose , Corantes Fluorescentes , Ácido Hipocloroso , Lisossomos , Ferroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Ácido Hipocloroso/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Animais , Camundongos , Humanos , Imagem Óptica , Células RAW 264.7
6.
Animals (Basel) ; 14(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891686

RESUMO

Human-wildlife conflicts are becoming increasingly common worldwide and are a challenge to biodiversity management. Compared with compensatory management, which often focuses on solving emergency conflicts, mitigation management allows decision-makers to better understand where the damage is distributed, how the species are distributed and when the species conduct their activity. Here, we integrated data collected from 90 districts/counties' damage surveys and 1271 camera traps to understand the damage status, abundance, density and activity rhythms of wild boar (Sus scrofa) in Zhejiang, Eastern China, from January 2019 to August 2023. We found that (1) wild boar-human conflicts were mainly distributed in the northwest and southwest mountainous regions of Zhejiang Province; (2) the total abundance of wild boar was 115,156 ± 24,072 individuals, indicating a growing trend over the past decade and a higher density in the western and southern regions; (3) wild boar exhibited different activity patterns across different damage regions, and the periods around 7:00, 11:00 and 16:00 represented activity peaks for wild boar in seriously damaged regions. The damage distribution, density, distribution and activity rhythms provide specific priority regions and activity intensity peaks for conflict mitigation. We believe that these findings based on the damage, distribution and activity could provide a scientific basis for mitigation management at the county level and enrich the framework of human-wildlife conflict mitigation.

7.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892163

RESUMO

Extreme weather poses huge challenges for animals that must adapt to wide variations in environmental temperature and, in many cases, it can lead to the local extirpation of populations or even the extinction of an entire species. Previous studies have found that one element of amphibian adaptation to environmental stress involves changes in mitochondrial gene expression at low temperatures. However, to date, comparative studies of gene expression in organisms living at extreme temperatures have focused mainly on nuclear genes. This study sequenced the complete mitochondrial genomes of five Asian hylid frog species: Dryophytes japonicus, D. immaculata, Hyla annectans, H. chinensis and H. zhaopingensis. It compared the phylogenetic relationships within the Hylidae family and explored the association between mitochondrial gene expression and evolutionary adaptations to cold stress. The present results showed that in D. immaculata, transcript levels of 12 out of 13 mitochondria genes were significantly reduced under cold exposure (p < 0.05); hence, we put forward the conjecture that D. immaculata adapts by entering a hibernation state at low temperature. In H. annectans, the transcripts of 10 genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, COX1, COX2 and ATP8) were significantly reduced in response to cold exposure, and five mitochondrial genes in H. chinensis (ND1, ND2, ND3, ND4L and ATP6) also showed significantly reduced expression and transcript levels under cold conditions. By contrast, transcript levels of ND2 and ATP6 in H. zhaopingensis were significantly increased at low temperatures, possibly related to the narrow distribution of this species primarily at low latitudes. Indeed, H. zhaopingensis has little ability to adapt to low temperature (4 °C), or maybe to enter into hibernation, and it shows metabolic disorder in the cold. The present study demonstrates that the regulatory trend of mitochondrial gene expression in amphibians is correlated with their ability to adapt to variable climates in extreme environments. These results can predict which species are more likely to undergo extirpation or extinction with climate change and, thereby, provide new ideas for the study of species extinction in highly variable winter climates.


Assuntos
Anuros , Genoma Mitocondrial , Filogenia , Animais , Anuros/genética , Anuros/fisiologia , Resposta ao Choque Frio/genética , Temperatura Baixa , Adaptação Fisiológica/genética , Regulação da Expressão Gênica
8.
Se Pu ; 42(6): 572-580, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38845518

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent contaminant with detrimental effects on the natural environment. This persistence leads to potential enrichment and osmotic transfer, which can affect normal circulation in the environment. PFOA poses significant threats to both the natural environment and human health. Therefore, the development of cost-effective, highly efficient, and environment-friendly PFOA adsorbents is a crucial endeavor. This paper presents the catalyst-free one-pot synthesis of fluorinated nitrogen-rich porous organic polymers (POP-3F) via a Schiff-base condensation reaction. The reaction between the nitrogen-rich compound 1,4-bis(2,4-diamino-1,3,5-triazine)benzene and p-trifluoromethylbenzaldehyde yielded POP-3F. The introduction of fluorine atoms into the nitrogen-rich porous organic polymer enhanced its hydrophobicity, thereby facilitating favorable fluoro-fluorine interactions with PFOA and, thus, improving the efficacy of the adsorbent. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ssNMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, and thermogravimetric analysis (TGA) were used to confirm the successful synthesis and characterization of POP-3F. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted in negative electrospray ionization (ESI) mode coupled with multi-reaction monitoring mode (MRM). The instrument was equipped with an Atlantis T3 column (100 mm×2.1 mm, 3 µm), and analysis was conducted using an external standard method. The influences of various factors on PFOA adsorption by POP-3F, including pH, salt concentration, and humic acid presence, were investigated. The highest PFOA removal rate (98.6%) was achieved at a pH of 2, indicating the applicability of POP-3F for the effective removal of PFOA from acidic industrial wastewater. The removal rate of PFOA was unaffected by increases in NaCl concentration. This phenomenon can be attributed to electrostatic interactions between the protonated secondary amines in POP-3F and deprotonated PFOA. Upon the addition of NaCl, a double electric layer is formed on the POP-3F surface, with Cl- ions in the outer layer and Na+ ions in the inner layer, which weakened these interactions. Humic acid is competitively adsorbed with PFOA. However, POP-3F demonstrated good removal rates even in the presence of high humic acid concentrations in water. Adsorption isotherm and kinetics experiments were conducted at the optimal pH to explore the relevant adsorption mechanism. The results showed a rapid initial adsorption rate, with 95.4% PFOA removal within 5 min. Optimal adsorption equilibrium was achieved within 6 h, and the removal rate decreased by only 0.3% after 24 h. This finding indicates that POP-3F exhibits sustained efficacy for PFOA removal. Langmuir fitting analysis revealed a theoretical maximum adsorption capacity of 191 mg/g for POP-3F; this value surpasses those of activated carbon materials and most other adsorbents, highlighting the superior PFOA-adsorption performance of POP-3F. Additionally, matrix effects minimally affected the removal of PFOA by POP-3F, with only a slight reduction (0.1%) observed in simulated natural water. The recyclability of POP-3F was assessed over five adsorption-desorption cycles. The removal efficenecy exhibited a minor decrease of only 0.67% after five cycles. These results demonstrate the recyclability of the proposed adsorbent, which translates into cost reduction through reusability. This characteristic renders POP-3F a promising candidate for the economical and efficient removal of PFOA from wastewater in practical applications.

9.
Biomed Pharmacother ; 175: 116787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788548

RESUMO

Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).


Assuntos
Microbioma Gastrointestinal , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/fisiopatologia , Animais , Estrogênios/metabolismo , Doenças Neuroinflamatórias
10.
Anal Bioanal Chem ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782780

RESUMO

Nanozymes, as an emerging class of enzyme mimics, have attracted much attention due to their adjustable catalytic activity, low cost, easy modification, and good stability. Researchers have made great efforts in developing and applying high-performance nanozymes. Recently, transition-metal-based nanozymes have been designed and widely developed because they possess unique photoelectric properties and high enzyme-like catalytic activities. To highlight these achievements and help researchers to understand the research status of transition-metal-based nanozymes, the development of transition-metal-based nanozymes from material characteristics to biological applications is summarized. Herein, we focus on introducing six categories of transition-metal-based nanozymes and highlight their progress in biomarker sensing and catalytic therapy for tumors. We hope that this review can guide the further development of transition-metal-based nanozymes and promote their practical applications in cancer diagnosis and treatment.

11.
Talanta ; 275: 126169, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705017

RESUMO

Photonic crystals (PCs), periodically arranged nanoparticles, have emerged with extraordinary optical properties for light manipulation owing to their photonic band gaps (PBGs). Here, a novel strategy and method was developed for efficient enrichment and sensitive detection of cationic organic pollutants in water. Size-controlled Fe3O4@poly (4-styrenesulfonic acid-co-maleic acid) (Fe3O4@PSSMA) was prepared, and high surface charge were formed with the coating of PSSMA layer on the surface of Fe3O4, which could be used for adsorption and removal of cationic organic pollutants. The Fe3O4@PSSMA after adsorbing cationic organic pollutant were assembled to magnetic photonic crystal microdroplet (MPCM) structure in an external magnetic field, which was used as surface-enhanced Raman scattering (SERS) substrate. By coupling the magnetically tuned PBGs with Raman laser wavelength, the light utilization efficiency can be improved and the coupled resonance effect was greatly enhanced. The enhancement factor (EF) of MB was more than 800 attributing to the dual function of enrichment and coupled resonance effect of MPCM. The developed analytical strategy is the first time to use MPCM as a SERS substrate to realize the sensitive detection of 10 nmol L-1 MB in real water, which greatly improves the application of MPCM in the field of contaminant analysis and detection in water.

12.
J Hazard Mater ; 472: 134563, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735186

RESUMO

Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have been raising global concerns due to their toxic effects on environment and human health. The monitoring of residues of POPs in seafood is crucial for assessing the accumulation of these contaminants in the study area and mitigating potential risks to human health. However, the diversity and complexity of POPs in seafood present significant challenges for their simultaneous detection. Here, a novel multi-component fluoro-functionalized covalent organic framework (OH-F-COF) was designed as SPE adsorbent for simultaneous extraction POPs. On this basis, the recognition and adsorption mechanisms were investigated by molecular simulation. Due to multiple interactions and large specific surface area, OH-F-COF displayed satisfactory coextraction performance for PFASs, PCBs, and BPs. Under optimized conditions, the OH-F-COF sorbent was employed in a strategy of simultaneous extraction and stepwise elution (SESE), in combination with HPLC-MS/MS and GC-MS method, to effectively determined POPs in seafood collected from coastal areas of China. The method obtained low detection limits for BPs (0.0037 -0.0089 ng/g), PFASs (0.0038 -0.0207 ng/g), and PCBs (0.2308 -0.2499 ng/g), respectively. This approach provided new research ideas for analyzing and controlling multitarget POPs in seafood. ENVIRONMENTAL IMPLICATIONS: Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have caused serious hazards to human health and ecosystems. Hence, there is a need to develop a quantitative method that can rapidly detect POPs in environmental and food samples. Herein, a novel multi-component fluorine-functionalized covalent organic skeletons (OH-F-COF) were prepared at room temperature, and served as adsorbent for POPs. The SESE-SPE strategy combined with chromatographic techniques was used to achieve a rapid detection of POPs in sea foods from the coastal provinces of China. This method provides a valuable tool for analyzing POPs in environmental and food samples.


Assuntos
Contaminação de Alimentos , Alimentos Marinhos , Extração em Fase Sólida , Alimentos Marinhos/análise , Extração em Fase Sólida/métodos , Adsorção , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise , Poluentes Orgânicos Persistentes/química , Estruturas Metalorgânicas/química , Fenóis/análise , Fenóis/isolamento & purificação , Bifenilos Policlorados/análise , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , Animais
13.
Biomed Mater ; 19(4)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38772387

RESUMO

Single-cell analysis is an effective method for conducting comprehensive heterogeneity studies ranging from cell phenotype to gene expression. The ability to arrange different cells in a predetermined pattern at single-cell resolution has a wide range of applications in cell-based analysis and plays an important role in facilitating interdisciplinary research by researchers in various fields. Most existing microfluidic microwell chips is a simple and straightforward method, which typically use small-sized microwells to accommodate single cells. However, this method imposes certain limitations on cells of various sizes, and the single-cell capture efficiency is relatively low without the assistance of external forces. Moreover, the microwells limit the spatiotemporal resolution of reagent replacement, as well as cell-to-cell communication. In this study, we propose a new strategy to prepare a single-cell array on a planar microchannel based on microfluidic flip microwells chip platform with large apertures (50 µm), shallow channels (50 µm), and deep microwells (50 µm). The combination of three configuration characteristics contributes to multi-cell trapping and a single-cell array within microwells, while the subsequent chip flipping accomplishes the transfer of the single-cell array to the opposite planar microchannel for cells adherence and growth. Further assisted by protein coating of bovine serum albumin and fibronectin on different layers, the single-cell capture efficiency in microwells is achieved at 92.1% ± 1%, while ultimately 85% ± 3.4% on planar microchannel. To verify the microfluidic flip microwells chip platform, the real-time and heterogeneous study of calcium release and apoptosis behaviours of single cells is carried out. To our knowledge, this is the first time that high-efficiency single-cell acquisition has been accomplished using a circular-well chip design that combines shallow channel, large aperture and deep microwell together. The chip is effective in avoiding the shearing force of high flow rates on cells, and the large apertures better allows cells to sedimentation. Therefore, this strategy owns the advantages of easy preparation and user-friendliness, which is especially valuable for researchers from different fields.


Assuntos
Microfluídica , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Microfluídica/métodos , Adesão Celular , Animais , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Fibronectinas/química , Fibronectinas/metabolismo , Cálcio/metabolismo , Cálcio/química , Soroalbumina Bovina/química , Comunicação Celular
14.
J Environ Manage ; 357: 120803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569268

RESUMO

Resuscitation promoting factors (Rpfs), known for their anti-dormancy cytokine properties, have been extensively investigated in the medical field. Although the Rpf from Micrococcus luteus has been successfully utilized to resuscitate and stimulate microbial populations for the degradation of polychlorinated biphenyls (PCBs), the presence of indigenous Rpf homologs in PCB-contaminated soils has not been established. In this study, the distribution characteristics of rpf-like genes and indigenous strain capable of producing Rpf in PCB-contaminated soils were explored. The results revealed the widespread presence of Rpf-like domains and their associated genes, particularly in close association with heavy metals and PCBs. The rpf-like genes were predominantly found in Proteobacteria and displayed a positive correlation with genes involved in PCB degradation and viable but non-culturable (VBNC) formation. Notably, the recombinant Rpf-Ac protein derived from the indigenous strain Achromobacter sp. HR2 exhibited muralytic activity and demonstrated significant efficacy in resuscitating the growth of VBNC cells, while also stimulating the growth of normal cells. These findings shed light on the prevalent presence of Rpf homologs in PCB-contaminated soils and their potential to resuscitate functional populations in the VBNC state, thereby enhancing in situ bioremediation.


Assuntos
Bifenilos Policlorados , Biodegradação Ambiental , Solo
15.
Acta Neurochir (Wien) ; 166(1): 200, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689141

RESUMO

BACKGROUND: The Cisternostomy is a novel surgical concept in the treatment of Traumatic Brain Injury (TBI), which can effectively drain the bloody cerebrospinal fluid from the skull base cistern, reduce the intracranial pressure, and improve the return of bone flap, but its preventive role in post-traumatic hydrocephalus (PTH) is unknow. The purpose of this paper is to investigate whether Cisternostomy prevents the occurrence of PTH in patients with moderate and severe TBI. METHODS: A retrospective analysis of clinical data of 86 patients with moderate and severe TBI from May 2019 to October 2021 was carried out in the Brain Trauma Center of Tianjin Huanhu Hospital. Univariate analysis was performed to examine the gender, age, preoperative Glasgow Coma Scale (GCS) score, preoperative Rotterdam CT score, decompressive craniectomy rate, intracranial infection rate, the incidence of subdural fluid, and incidence of hydrocephalus in patients between the Cisternostomy group and the non-Cisternostomy surgery group. we also analyzed the clinical outcome indicators like GCS at discharge,6 month GOS-E and GOS-E ≥ 5 in two groups.Additionaly, the preoperative GCS score, decompressive craniectomy rate, age, and gender of patients with PTH and non hydrocephalus were compared. Further multifactorial logistic binary regression was performed to explore the risk factors for PTH. Finally, we conducted ROC curve analysis on the statistically significant results from the univariate regression analysis to predict the ability of each risk factor to cause PTH. RESULTS: The Cisternostomy group had a lower bone flap removal rate(48.39% and 72.73%, p = 0.024)., higer GCS at discharge(11.13 ± 2.42 and 8.93 ± 3.31,p = 0.000) and better 6 month GOS-E(4.55 ± 1.26 and 3.95 ± 1.18, p = 0.029)than the non-Cisternostomy group However, there was no statistical difference in the incidence of hydrocephalus between the two groups (25.81% and 30.91%, p = 0.617). Moreover, between the hydrocephalus group and no hydrocephalus group,there were no significant differences in the incidence of gender, age, intracranial infection, and subdural fluid. While there were statistical differences in peroperative GCS score, Rotterdam CT score, decompressive craniectomy rate, intracranial infection rate, and the incidence of subdural fluid in the two groups, there was no statistical difference in the percentage of cerebral cisterns open drainage between the hydrocephalus group and no hydrocephalus group (32.00% and 37.70%, p = 0.617). Multifactorial logistic binary regression analysis results revealed that the independent risk factors for PTH were intracranial infection (OR = 18.460, 95% CI: 1.864-182.847 p = 0.013) and subdural effusion (OR = 10.557, 95% CI: 2.425-35.275 p = 0.001). Further, The ROC curve analysis showed that peroperative GCS score, Rotterdam CT score and subdural effusion had good ACU(0.785,0.730,and 0.749), with high sensitivity and specificity to predict the occurrence of PTH. CONCLUSIONS: Cisternostomy may decrease morbidities associated with removal of the bone flap and improve the clinical outcome, despite it cannot reduce the disability rate in TBI patients.Intracranial infection and subdural fluid were found to be the independent risk factors for PTH in patients with TBI,and the peroperative GCS score, Rotterdam CT score and subdural effusion had higher sensitivity and specificity to predict the occurrence of PTH. And more importantly, no correlation was observed between open drainage of the cerebral cisterns and the occurrence of PTH, indicating that Cisternostomy may not be beneficial in preventing the occurrence of PTH in patients with moderate and severe TBI.


Assuntos
Lesões Encefálicas Traumáticas , Hidrocefalia , Humanos , Masculino , Feminino , Lesões Encefálicas Traumáticas/cirurgia , Lesões Encefálicas Traumáticas/complicações , Pessoa de Meia-Idade , Adulto , Hidrocefalia/cirurgia , Hidrocefalia/etiologia , Hidrocefalia/prevenção & controle , Estudos Retrospectivos , Craniectomia Descompressiva/métodos , Idoso , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Adulto Jovem , Escala de Coma de Glasgow
16.
Anal Chim Acta ; 1303: 342528, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609267

RESUMO

Matrix deposition plays a critical role in image quality of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To improve the ionization efficiency and overcome the limitation of traditional matrix deposition methods in the face of difficult-to-sublimate or difficult-to-dissolve matrix, covalent organic frameworks (COFs) named COF-DhaTab was successfully synthesized and firstly used as matrix film. It was fabricated by imprinting of sieved COF-DhaTab powder on the surface of a double-sided adhesive tape. Outstanding reproducibility and uniformity of COF-DhaTab film were demonstrated by relative standard deviation (RSD) within 8.37% and 7.71% from dot-to-dot and plate-to-plate, respectively. With the introduction of double-sided adhesive tape, water contact angle (WCA) of COF-DhaTab film increased from 55° to 141°, resulting in significant suppression of analyte diffusion. Moreover, the intensity of potassium perfluorooctanic sulfonate (PFOS, C8F17SO3-, m/z 498.93) was 9.3 × 105, more than six hundred times higher than that using DHB matrix. This enhancement was attributed to the rough surface and multiple branches of the synthesized COF-DhaTab. To verify the ability of COF-DhaTab film as substrate, the spatial distribution of PFOS in zebrafish, rat liver and kidney tissues was explored. Superior imaging capability was displayed with high-spatial resolution and reliable location distribution. These results not only demonstrate the outstanding ability of COF-DhaTab as matrix for MALDI-MS and MALDI-MSI, but also provide a facile approach for fabrication of novel matrix films for MALDI-MSI.

17.
Anal Chem ; 96(13): 5134-5142, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507805

RESUMO

Mitochondria are important organelles that provide energy for cellular physiological activities. Changes in their structures may indicate the occurrence of diseases, and the super-resolution imaging of mitochondria is of great significance. However, developing fluorescent probes for mitochondrial super-resolution visualization still remains challenging due to insufficient fluorescence brightness and poor stability. Herein, we rationally synthesized an ultrabright xanthene fluorescence probe Me-hNR for mitochondria-specific super-resolution imaging using structured illumination microscopy (SIM). The rigid structure of Me-hNR provided its ultrahigh fluorescence quantum yield of up to 0.92 and ultrahigh brightness of up to 16,000. Occupying the para-position of the O atom in the xanthene skeleton by utilizing the smallest methyl group ensured its excellent stability. The study of the photophysical process indicated that Me-hNR mainly emitted fluorescence via radiative decay, and nonradiative decay and inter-system crossing were rare due to the slow nonradiative decay rate and large energy gap (ΔEst = 0.55 eV). Owing to these excellent merits, Me-hNR can specifically light up mitochondria at ultralow concentrations down to 5 nM. The unprecedented spatial resolution for mitochondria with an fwhm of 174 nm was also achieved. Therefore, this ultrabright xanthene fluorescence probe has great potential in visualizing the structural changes of mitochondria and revealing the pathogenesis of related diseases using SIM.


Assuntos
Corantes Fluorescentes , Xantenos , Corantes Fluorescentes/química , Mitocôndrias , Organelas , Microscopia de Fluorescência/métodos
18.
Anal Methods ; 16(12): 1748-1755, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38437029

RESUMO

In this study, a new type of covalent organic framework (TpBD) functionalized bivalved magnetic microsphere (TpBD-DS MNS) adsorbent was applied for the enrichment and detection of trace morphine and its metabolites in mouse urine. The main factors affecting the efficiency of magnetic solid phase extraction were optimized, and the optimal MSPE conditions were obtained. Combined with the UPLC-MS/MS technique, a new method for determining trace morphine and its metabolites in urine was established. The detection (LOD) and quantification (LOQ) limits for morphine and its metabolites ranged from 0.16 pg mL-1 to 0.53 pg mL-1 and 0.26 pg mL-1 to 1.25 pg mL-1, respectively. The recovery of the methods ranged from 87.4-97.3%, and the RSD was less than 5%. By employing this methodology, we successfully obtained the temporal change curve of morphine and its metabolites in mouse urine through collection and measurement post intravenous administration of morphine. This approach not only presents a novel means for investigating pharmacokinetics and drug monitoring but also demonstrates significant potential in the fields of forensic toxicology and drug abuse surveillance.


Assuntos
Morfina , Espectrometria de Massas em Tandem , Animais , Camundongos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Magnetismo , Fenômenos Magnéticos
19.
Talanta ; 273: 125877, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460420

RESUMO

Pillar[n]arenes (P[n]A, n = 5-10) have attracted much attention because of their highly symmetric pillar-shaped architecture with π-electron rich cavity. Nevertheless, the use of ionic liquid functionalized P[n]A in chromatography has not been reported up to data. This work reports the investigation of the imidazolium ionic liquids functionalized pillar[6]arene (P6A-C10-IM-C8[NTf2]) as the stationary phase for gas chromatography (GC). The statically coated P6A-C10-IM-C8[NTf2] column (0.25 mm i.d.) showed moderate polarity and high column efficiency of 4733 plates/m determined by n-dodecane at 120 °C (k = 2.29). Owing to its unique amphiphilic conformation, the P6A-C10-IM-C8[NTf2] showed good column inertness and resolving capability for a wide range of analytes and isomers. Particularly, the P6A-C10-IM-C8[NTf2] column exhibited distinctly advantageous performance for the challenging isomers of halogenated benzenes, benzaldehydes, phenols and anilines over the common commercial columns, namely 5% phenyl methyl polysiloxane (HP-5) and 35% phenyl methyl polysiloxane (HP-35). In addition, it exhibited good column repeatability and reproducibility with RSD values on the retention times less than 0.05% for run-to-run, 0.38% for day-to-day and 2.94% for column-to-column, respectively. This work demonstrates the promising future of ionic liquid P[n]A stationary phases for chromatographic separations.

20.
Food Chem ; 447: 139016, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513494

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are extensively found in foods, posing potential toxicity to humans. Therefore, rapid analysis and monitoring of PFASs in foods are crucial for public health and also a challenge. To detect trace PFASs in foods, construction of sorbents with multiple interactions could be an effective approach. Herein, a cationic-fluorinated covalent organic framework (CF-COF) was prepared by post-modification and used as a magnetic solid-phase extraction adsorbent for adsorption of PFASs. By combining magnetic solid-phase extraction based on CF-COF with liquid chromatography-tandem mass spectrometry (LC - MS/MS), a novel method was developed for determination of eight long-chain PFASs in foods. Under optimized conditions, the method exhibited low detection limits (0.003-0.019 ng/g) and satisfactory recovery rates (73.5-118%) for PFASs. This study introduces a novel idea for the development of adsorbents targeting PFASs, along with a new analytical method for monitoring of PFASs in foods.


Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Humanos , Espectrometria de Massas em Tandem/métodos , Estruturas Metalorgânicas/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Extração em Fase Sólida/métodos , Fluorocarbonos/análise , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA