RESUMO
[This corrects the article DOI: 10.3389/fpls.2024.1374228.].
RESUMO
To replace explosive nitrate-based chemicals in MS medium, this study developed a new, safer, and more cost-effective method using fertilizer-grade calcium ammonium nitrate and ammonium sulfate. This approach replaces ammonium nitrate and potassium nitrate, ensuring both safety and cost efficiency for sugarcane propagation. Six local sugarcane varieties-Zhongtang1 (ZT1), Zhongtang3 (ZT3), Zhongtang6 (ZT6), Guitang42 (GT42), Guitang44 (GT44), and Guiliu 07150 (GT07150)-were used. In the control group (Ck), nitrate ions (NO3-) were 39.28 mM, and ammonium ions (NH4+) were 20.49 mM, with a 2:1 ratio. In the treatment groups, the concentrations of nitrate ions (NO3-) and ammonium ions (NH4+) included treatment 1 (19.69 mM NO3- and 10.3 mM NH4+), treatment 2 (29.54 mM and 15.44 mM), treatment 3 (39.38 mM and 20.59 mM), treatment 4 (49.225 mM and 25.74 mM), treatment 5 (59.07 mM and 30.89 mM), and treatment 6 (68.915 mM and 36.03 mM), respectively, all with the same 2:1 ratio. Fifty bottles per treatment, with three replicates, were used for each sugarcane plantlets treatment. After five subcultures, the optimal ratio was determined by assessing morphological and physiological parameters, nitrogen levels, and SOD enzyme activity. The results indicated that treatment 3 (39.38 mM and 20.59 mM) and treatment 4 (49.225 mM and 25.74 mM) had the best morphological and physiological indicators. The optimal doses of calcium ammonium nitrate and ammonium sulfate were found in treatments 3 and 4, as well as in the control, with no significant difference among them. However, treatment 3, due to its lower dose, was more cost effective. To improve cost efficiency in practical production, it is recommended to use the lower concentration ratio of treatment 3 for plant tissue culture plantlets.
RESUMO
The properties and applications of soybean protein isolates (SPIs) have been extensively investigated. In this study, we determined the optimal conditions for the preparation of the DND358 soybean protein isolate (DND358-SPI), assessed its physicochemical and functional properties, and investigated its potential applications in the food industry. According to the results, the highest extraction rate of DND358-SPI was observed when the pH was 9.5, the temperature was 55 °C, the duration was 80 min, and the material-to-liquid ratio was 1:20 (w/v). With regard to the functional properties, the water-holding capacity (WHC) and oil-binding capacity (OBC) of DND358-SPI were higher than those of other varieties, reaching 4.73% and 11.04%, respectively. In addition, the hardness, adhesiveness, chewiness, and resilience of DND358-SPI were higher than those of other varieties, reaching 159.27 g, 186.07 g, 6.78 mj, and 1.88, respectively. These findings indicate that DND358-SPI can reduce cholesterol levels and may be used to produce cholesterol-lowering food products.
RESUMO
Soybean [Glycine max (L.) Merr.] is a major oil-producing crop worldwide. Although several related proteins regulating soybean oil accumulation have been reported, little is known about the regulatory mechanisms. In this study, we characterized vascular plant one-zinc-finger 1A (GmVOZ1A) that interacts with WRINKLED 1a (GmWRI1a) using yeast two-hybrid library screening. The GmVOZ1A-GmWRI1a interaction was further verified by protein-protein interaction assays in vivo and in vitro. GmVOZ1A enhanced the seed fatty acid and oil contents by regulating genes involved in lipid biosynthesis. Conversely, a loss-of-function mutation in GmVOZ1A resulted in a reduction in triacylglycerol (TAG) content in soybean. Protein-DNA interaction assays revealed that GmVOZ1A and GmWRI1a cooperate to up-regulate the expression level of acyl-coenzymeA-binding protein 6a (GmACBP6a) and promote the accumulation of TAG. In addition, GmACBP6a overexpression promoted seed fatty acid and oil contents, as well as increased seed size and 100-seed weight. Taken together, these findings indicate that the transcription factor GmVOZ1A regulates soybean oil synthesis and cooperates with GmWRI1a to up-regulate GmACBP6a expression and oil biosynthesis in soybean. The results lay a foundation for a comprehensive understanding of the regulatory mechanisms underlying soybean oil biosynthesis and will contribute to improving soybean oil production through molecular breeding approaches.
RESUMO
In the traditional Deep Deterministic Policy Gradient (DDPG) algorithm, path planning for mobile robots in mapless environments still encounters challenges regarding learning efficiency and navigation performance, particularly adaptability and robustness to static and dynamic obstacles. To address these issues, in this study, an improved algorithm frame was proposed that designs the state and action spaces, and introduces a multi-step update strategy and a dual-noise mechanism to improve the reward function. These improvements significantly enhance the algorithm's learning efficiency and navigation performance, rendering it more adaptable and robust in complex mapless environments. Compared to the traditional DDPG algorithm, the improved algorithm shows a 20% increase in the stability of the navigation success rate with static obstacles along with a 25% reduction in pathfinding steps for smoother paths. In environments with dynamic obstacles, there is a remarkable 45% improvement in success rate. Real-world mobile robot tests further validated the feasibility and effectiveness of the algorithm in true mapless environments.
RESUMO
12-Oxo-phytodienoic acid reductases (OPRs) perform vital functions in plants. However, few studies have been reported in sugarcane (Saccharum spp.), and it is of great significance to systematically investigates it in sugarcane. Here, 61 ShOPRs, 32 SsOPRs, and 36 SoOPRs were identified from R570 (Saccharum spp. hybrid cultivar R570), AP85-441 (Saccharum spontaneum), and LA-purple (Saccharum officinarum), respectively. These OPRs were phylogenetically classified into four groups, with close genes similar structures. During evolution, OPR gene family was mainly expanded via whole-genome duplications/segmental events and predominantly underwent purifying selection, while sugarcane OPR genes may function differently in response to various stresses. Further, ScOPR2, a tissue-specific OPR, which was localized in cytoplasm and cell membrane and actively response to salicylic acid (SA), methyl jasmonate, and smut pathogen (Sporisorium scitamineum) stresses, was cloned from sugarcane. In addition, both its transient overexpression and stable overexpression enhanced the resistance of transgenic plants to pathogen infection, most probably through activating pathogen-associated molecular pattern/pattern-recognition receptor-triggered immunity, producing reactive oxygen species, and initiating mitogen-activated protein kinase cascade. Subsequently, the transmission of SA and hypersensitive reaction were triggered, which stimulated the transcription of defense-related genes. These findings provide insights into the function of ScOPR2 gene for disease resistance.
Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Filogenia , Doenças das Plantas , Proteínas de Plantas , Saccharum , Saccharum/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Ustilaginales/fisiologia , Ustilaginales/genética , Genes de Plantas/genética , Acetatos , Oxirredutases atuantes sobre Doadores de Grupo CH-CHRESUMO
Alternative splicing (AS) plays important roles in modulating environmental stress responses in plants. However, little is known about the functions of bicarbonate-induced AS in cultivated soybean (Glycine max L. Merr.). In this study, we combined PacBio isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) to elucidate the bicarbonate-induced AS events in soybean root and leaf tissues. Compared to RNA-seq, Iso-seq identified more novel genes and transcripts, as well as more AS events, indicating that Iso-seq is more efficient in AS detection. Combining these two technologies, we found that intron retention (IR) is the most frequent AS event type. We identified a total of 913 and 1974 bicarbonate stress-responsive differentially alternative spliced genes (DAGs) in soybean leaves and roots respectively, from our RNA-seq results. Additionally, we determined a transcription factor (GmNTL9) and a splicing factor (GmRSZ22), and validated their roles in bicarbonate stress response by AS. Overall, our study opens an avenue for evaluating plant AS regulatory networks, and the obtained global landscape of alternative splicing provides valuable insights into the AS-mediated bicarbonate-responsive mechanisms in plant species.
Assuntos
Processamento Alternativo , Bicarbonatos , Regulação da Expressão Gênica de Plantas , Glycine max , Precursores de RNA , Estresse Fisiológico , Glycine max/genética , Processamento Alternativo/efeitos dos fármacos , Bicarbonatos/farmacologia , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Precursores de RNA/genética , RNA-Seq/métodos , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Análise de Sequência de RNA/métodosRESUMO
Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.
Assuntos
Células-Tronco Hematopoéticas , Homeostase , Mitocôndrias , Serina , Animais , Células-Tronco Hematopoéticas/metabolismo , Serina/metabolismo , Mitocôndrias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/genética , FerroptoseRESUMO
BACKGROUND: The incidence and mortality of lung cancer have increased annually. Accurate diagnosis can help improve therapeutic efficacy of interventions and prognosis. Percutaneous lung biopsy is a reliable method for the clinical diagnosis of lung cancer. Ultrasound-guided percutaneous lung biopsy technology has been widely promoted and applied in recent years. AIM: To investigate the diagnostic value of contrast-enhanced ultrasound (CEUS)-guided percutaneous biopsy in peripheral pulmonary lesions. METHODS: We retrospectively collected data on 237 patients with peripheral thoracic focal lesions who underwent puncture biopsy at Wuxi People's Hospital. The patients were randomly divided into two groups: The CEUS-guided before lesion puncture group (contrast group) and conventional ultrasound-guided group (control group). Analyze the diagnostic efficacy of the puncture biopsy, impact of tumor size, and number of puncture needles and complications were analyzed and compared between the two groups. RESULTS: Accurate pathological results were obtained for 92.83% (220/237) of peripheral lung lesions during the first biopsy, with an accuracy rate of 95.8% (113/118) in the contrast group and 89.9% (107/119) in the control group. The difference in the area under the curve (AUC) between the contrast and the control groups was not statistically significant (0.952 vs 0.902, respectively; P > 0.05). However, when the lesion diameter ≥ 5 cm, the diagnostic AUC of the contrast group was higher than that of the control group (0.952 vs 0.902, respectively; P < 0.05). In addition, the average number of puncture needles in the contrast group was lower than that in the control group (2.58 ± 0.53 vs 2.90 ± 0.56, respectively; P < 0.05). CONCLUSION: CEUS guidance can enhance the efficiency of puncture biopsy of peripheral pulmonary lesions, especially for lesions with a diameter ≥ 5 cm. Therefore, CEUS guidance has high clinical diagnostic value in puncture biopsy of peripheral focal lung lesions.
RESUMO
Cu catalyses electrochemical CO2 reduction to valuable multicarbon products but understanding the structure-function relationship has remained elusive due to the active Cu sites being heterogenized and under dynamic re-construction during electrolysis. We herein coordinate Cu with six phenyl-1H-1,2,3-triazole derivatives to form stable coordination polymer catalysts with homogenized, single-site Cu active sites. Electronic structure modelling, X-ray absorption spectroscopy, and ultraviolet-visible spectroscopy show a widely tuneable Cu electronics by modulating the highest occupied molecular orbital energy of ligands. Using CO diffuse reflectance Fourier transform infrared spectroscopy, in-situ Raman spectroscopy, and density functional theory calculations, we find that the binding strength of *CO intermediate is positively correlated to highest occupied molecular orbital energies of the ligands. As a result, we enable a tuning of C-C coupling efficiency-a parameter we define to evaluate the efficiency of C2 production-in a broad range of 0.26 to 0.86. This work establishes a molecular platform that allows for studying structure-function relationships in CO2 electrolysis and devises new catalyst design strategies appliable to other electrocatalysis.
RESUMO
Plant resistance against biotic stressors is significantly influenced by pathogenesis-related 1 (PR1) proteins. This study examines the systematic identification and characterization of PR1 family genes in sugarcane (Saccharum spontaneum Np-X) and the transcript expression of selected genes in two sugarcane cultivars (ROC22 and Zhongtang3) in response to Ustilago scitaminea pathogen infection. A total of 18 SsnpPR1 genes were identified at the whole-genome level and further categorized into four groups. Notably, tandem and segmental duplication occurrences were detected in one and five SsnpPR1 gene pairs, respectively. The SsnpPR1 genes exhibited diverse physio-chemical attributes and variations in introns/exons and conserved motifs. Notably, four SsnpPR1 (SsnpPR1.02/05/09/19) proteins displayed a strong protein-protein interaction network. The transcript expression of three SsnpPR1 (SsnpPR1.04/06/09) genes was upregulated by 1.2-2.6 folds in the resistant cultivar (Zhongtang3) but downregulated in the susceptible cultivar (ROC22) across different time points as compared to the control in response to pathogen infection. Additionally, SsnpPR1.11 was specifically upregulated by 1.2-3.5 folds at 24-72 h post inoculation (hpi) in ROC22, suggesting that this gene may play an important negative regulatory role in defense responses to pathogen infection. The genetic improvement of sugarcane can be facilitated by our results, which also establish the basis for additional functional characterization of SsnpPR1 genes in response to pathogenic stress.
Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Saccharum , Estresse Fisiológico , Ustilago , Saccharum/genética , Saccharum/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ustilago/genética , Ustilago/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Estresse Fisiológico/genética , Resistência à Doença/genética , Família Multigênica , FilogeniaRESUMO
Soybean ß-conglycinin is a major allergen that adversely affects the nutritional properties of soybean. Soybean deficient in ß-conglycinin is associated with low allergenicity and high nutritional value. Long intergenic noncoding RNAs (lincRNAs) regulate gene expression and are considered important regulators of essential biological processes. Despite increasing knowledge of the functions of lincRNAs, relatively little is known about the effects of lincRNAs on the accumulation of soybean ß-conglycinin. The current study presents the identification of a lincRNA lincCG1 that was mapped to the intergenic noncoding region of the ß-conglycinin α-subunit locus. The full-length lincCG1 sequence was cloned and found to regulate the expression of soybean seed storage protein (SSP) genes via both cis- and trans-acting regulatory mechanisms. Loss-of-function lincCG1 mutations generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system led to the deficiency of the allergenic α'-, α-, and ß-subunits of soybean ß-conglycinin as well as higher content of proteins, sulfur-containing amino acids, and free arginine. The dominant null allele LincCG1, and consequently, the ß-conglycinin-deficient phenotype associated with the lincCG1-gene-edited line was stably inherited by the progenies in a Mendelian fashion. The dominant null allele LincCG1 may therefore be exploited for engineering/developing novel hypoallergenic soybean varieties. Furthermore, Cas9-free and ß-conglycinin-deficient homozygous mutant lines were obtained in the T1 generation. This study is the first to employ the CRISPR/Cas9 technology for editing a lincRNA gene associated with the soybean allergenic protein ß-conglycinin. Moreover, this study reveals that lincCG1 plays a crucial role in regulating the expression of the ß-conglycinin subunit gene cluster, besides highlighting the efficiency of employing the CRISPR/Cas9 system for modulating lincRNAs, and thereby regulating soybean seed components.
Assuntos
Antígenos de Plantas , Sistemas CRISPR-Cas , Edição de Genes , Globulinas , Glycine max , RNA Longo não Codificante , Proteínas de Armazenamento de Sementes , Proteínas de Soja , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/química , Globulinas/genética , Globulinas/metabolismo , Globulinas/química , Glycine max/genética , Glycine max/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/química , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Proteínas de Soja/química , RNA Longo não Codificante/genética , Regulação da Expressão Gênica de Plantas , Sementes/genética , Sementes/metabolismo , Sementes/químicaRESUMO
The growth and development of soybean plants can be affected by both abiotic and biotic stressors, such as saline-alkali stress and Phytophthora root rot. In this study, we identified a stress-related gene-GmARM-whose promoter contained several hormone-response and stress-regulatory elements, including ABRE, TCA element, STRE, and MBS. qRT-PCR analysis showed that the expression of GmARM was the highest in seeds at 55 days after flowering. Furthermore, this gene was upregulated after exposure to saline-alkali stress and Phytophthora root rot infection at the seedling stage. Thus, we generated GmARM mutants using the CRISPR-Cas9 system to understand the role of this gene in stress response. T3 plants showed significantly improved salt tolerance, alkali resistance, and disease resistance, with a significantly higher survival rate than the wildtype plants. Moreover, mutations in GmARM affected the expression of related stress-resistance genes, indicating that GmARM mutants achieved multiple stress tolerance. Therefore, this study provides a foundation for further exploration of the genes involved in resistance to multiple stresses in soybean that can be used for breeding multiple stress-resistance soybean varieties.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Glycine max , Estresse Fisiológico , Glycine max/genética , Glycine max/fisiologia , Glycine max/microbiologia , Edição de Genes/métodos , Estresse Fisiológico/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Phytophthora/fisiologia , Genes de PlantasRESUMO
Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.
RESUMO
BACKGROUND: Hematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression, which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury, while if and how the niche is reshaped and regulates HSC regeneration are poorly understood. METHODS: A mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number, distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry, immunofluorescence, colony assay and bone marrow transplantation, in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro, and was consolidated using megakaryocyte-specific knockout mice and transgenic mice. RESULTS: Megakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile, transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury, whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically, HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion, and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs, but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently, the delicate coordination between proliferation, mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly, punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury, representing a superior therapeutic approach for myelosuppression. CONCLUSIONS: Our study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.
Assuntos
Ferroptose , Células-Tronco Hematopoéticas , Fator de Crescimento Insulin-Like I , Megacariócitos , Regeneração , Animais , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Megacariócitos/efeitos da radiação , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Ferroptose/genética , Camundongos , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Lesões por Radiação/genética , Transdução de Sinais/efeitos da radiaçãoRESUMO
Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.
RESUMO
Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.
Assuntos
Fabaceae , Phytophthora , Fatores de Transcrição/genética , Glycine max/genética , Etilenos , Plantas Geneticamente ModificadasRESUMO
Sugarcane (Saccharum spp.), a major cash crop that is an important source of sugar and bioethanol, is strongly influenced by the impacts of biotic and abiotic stresses. The intricate polyploid and aneuploid genome of sugarcane has shown various limits for conventional breeding strategies. Nonetheless, biotechnological engineering currently offers the best chance of introducing commercially significant agronomic features. In this study, an efficient Agrobacterium-mediated transformation system that uses the herbicide-resistant CP4-EPSPS gene as a selection marker was developed. Notably, all of the plants that were identified by PCR as transformants showed significant herbicide resistance. Additionally, this transformation protocol also highlighted: (i) the high yield of transgenic lines from calli (each gram of calli generated six transgenic lines); (ii) improved selection; and (iii) a higher transformation efficiency. This protocol provides a reliable tool for a routine procedure for the generation of resilient sugarcane plants.
RESUMO
Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway.