Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(13): 12079-12097, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033861

RESUMO

Coal has various types of macerals, which have different pore structures and adsorption properties that change with coal's thermal metamorphism. In-depth study of the characteristics of different coal macerals, especially the pore structure and adsorption properties, can better predict the coal reservoir gas storage capacity and migration ability. In this study, the sub-samples enriched in a specific maceral group with different coal ranks and particle sizes were obtained by centrifugal flotation experiments. Then, experiments containing low-temperature N2 isotherm adsorption (LT-N2GA), low-temperature CO2 isotherm adsorption (LT-CO2GA), and methane isothermal adsorption were carried out on the sub-samples to quantitatively analyze the evolution characteristics of pore structure and adsorption properties of different maceral groups. The results showed the following: (1) The separation effect of the light maceral groups by centrifugal flotation experiments increased with the decrease of particle sizes, which were treated with the heavy liquid of low and medium densities, while that of the heavy maceral groups had the relatively best separation effect in the particle sizes of 0.1-0.125 mm, which were treated with the heavy liquid of high densities. (2) The vitrinite-enriched samples had more ultra-micropores (mainly within the diameter range of 0.4-0.65 nm), while the inertinite enriched samples had more mesopores and transition pores (mainly within the diameter range of 40-50 nm). (3) For the low-rank coal, inertinite had more potential methane adsorption capacity. However, for the medium- and high-rank coal, vitrinite had more potential methane adsorption capacity. (4) For the low-rank coal, the adsorption potential and adsorption space increased with the increase of the inertinite content, while the adsorption potential, adsorption space, and surface free energy for the medium- and high-rank coal increased with the increase of vitrinite content. It is expected that the results can deepen the understanding about the gas storage capacity and migration ability and be used in the prevention of gas outburst and the reduction of carbon emission.

2.
Microorganisms ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838462

RESUMO

To study the distribution features of microorganisms in distinct hydrological areas of the southern Qinshui Basin, C-N-S microorganisms were studied using 16S RNA sequencing, metagenome sequencing and geochemical technologies, showing the high sensitivity of microorganisms to the hydrodynamic dynamics of coal. The hydrodynamic intensity of the #3 coal gradually decreased from the runoff areas to the stagnant areas. The stagnant zones have higher reservoir pressure, methane content, δ13CDIC and TDS and lower SO42-, Fe3+ and NO3- concentrations than the runoff areas. C-N-S-cycling microorganisms, including those engaged in methanogenesis, nitrate respiration, fermentation, nitrate reduction, dark oxidation of sulfur compounds, sulfate respiration, iron respiration, chlorate reduction, aromatic compound degradation, denitrification, ammonification and nitrogen fixation, were more abundant in the stagnant areas. The relative abundance of C-N-S functional genes, including genes related to C metabolism (e.g., mcr, mer, mtr, fwd and mtd), N metabolism (e.g., nifDKH, nirK, narGHI, nosZ, amoB, norC and napAB) and sulfur metabolism (e.g., dsrAB and PAPSS), increased in the stagnant zones, indicating that there was active microbiological C-N-S cycling in the stagnant areas. The degradation and fermentation of terrestrial plant organic carbon and coal seam organic matter could provide substrates for methanogens, while nitrogen fixation and nitrification can provide nitrogen for methanogens, which are all favorable factors for stronger methanogenesis in stagnant areas. The coal in the study area is currently in the secondary biogenic gas generation stage because of the rising of the strata, which recharges atmospheric precipitation. The random forest model shows that the abundance of C-N-S microorganisms and genes could be used to distinguish different hydrological zones in coal reservoirs. Since stagnant zones are usually high-gas-bearing zones and high-production areas of CBM exploration, these microbiological indicators can be used as effective parameters to identify high-production-potential zones. In addition, nitrate respiration and sulfate respiration microorganisms consumed NO3- and SO42-, causing a decrease in the content of these two ions in the stagnant areas.

3.
ACS Omega ; 7(9): 7715-7724, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284701

RESUMO

The exploration and exploitation of coalbed methane (CBM), an essential unconventional gas resource, have received much attention. In terms of shallow groundwater assessment during CBM production, biogenic methane natural formation in situ and methane migration from deep sources into shallow aquifers need to be of most concern. This study analyzes geochemical surveys including ions, isotopes, and dissolved methane concentrations in 75 CBM coproduced water samples in the southern Qinshui Basin. Most of these water samples are weakly alkaline. Some samples' negative oxidation/reduction potential (ORP) values reveal that the CBM reservoir water samples are mainly produced from reductive groundwater environments. Cl-, Na+, and HCO3 - are the dominant ionic constituents of the water samples, which are usually associated with dissolved methane concentrations. The biogeochemical parameters and isotopic features provide an opportunity to assess the origin, migration, and oxidation of biogenic or thermogenic methane. Some water samples suggest biogenic methane formation in situ characterized by negligible SO4 2- and NO3 - concentrations and low δ13CCH4. Only a few water samples indicate the migration of biogenic methane into shallow aquifers without oxidation based on elevated SO4 2-, NO3 -, and δ13CDIC and low δ13CCH4. A few cases characterized by elevated δ13CCH4, negative δ13CDIC values, and negligible SO4 2- and methane concentrations suggest the oxidation of biogenic methane rather than the migration of thermogenic methane. A significant number of cases mean methane migration to shallow aquifers. Partial oxidation of thermogenic or mixed methane is evaluated by negligible SO4 2-, NO3 -, and methane concentrations and elevated δ13CCH4. Dissolved methane isotopic compositions and aqueous biogeochemical features help study methane formation and potential migration in shallow groundwater.

4.
ACS Omega ; 6(33): 21395-21409, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34471743

RESUMO

Microbial decomposition of carbon and biogenic methane in coal is one of the most important issues in CBM exploration. Using metagenomic technologies, the microbial C-N-S functional genes in different hydraulic zones of high-rank coal reservoirs were systematically studied, demonstrating the high sensitivity of this ecosystem to hydrodynamic conditions. The results show that the hydrodynamic strength of coal reservoir #3 in the Shizhuangnan block gradually weakened from east to west, forming a transitional feature from a runoff area to a stagnant area. Compared with runoff areas, stagnant areas have higher reservoir pressure, gas content, and ion concentrations. The relative abundance of genes associated with C, N, and S cycling increased from the runoff area to the stagnant area, including cellulose-degrading genes (e.g., cellulose 1,4-beta-cellobiosidase), methane metabolism genes (e.g., mcr, fwd, mtd, mer, and mtr), N-cycling genes (e.g., nifDKH, amoB, narGHI, napAB, nirK, norC, and nosZ), and S-cycling genes (e.g., dsrAB, sir, cysN, sat, aprAB, and PAPSS). This indicates that the stagnant zone had a more active microbial C-N-S cycle. The machine learning model shows that these significantly different genes could be used as effective indices to distinguish runoff and stagnant areas. Carbon and hydrogen isotopes indicate that methane in the study area was thermally generated. Methanogens compete with anaerobic heterotrophic bacteria to metabolize limited substrates, resulting in a low abundance of methanogens. In addition, the existence of methane-oxidizing bacteria suggests that biogenic methane was consumed by methanotrophic bacteria, which is the main reason why biogenic methane in the study area was not effectively preserved. In addition, weakened hydrodynamic conditions increased genes involved in nutrient cycling, including organic matter decomposition, methanogenesis, denitrification, and sulfate reduction, which contributed to the increase in CO2 and consumption of sulfate and nitrate from runoff areas to stagnant areas.

5.
Sci Rep ; 10(1): 20306, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219245

RESUMO

The development of coalbed methane (CBM) is not only affected by geological factors, but also by engineering factors, such as artificial fracturing and drainage strategies. In order to optimize drainage strategies for wells in unique geological conditions, the characteristics of different stages of CBM production are accurately described based on the dynamic behavior of the pressure drop funnel and coal reservoir permeability. Effective depressurization is achieved by extending the pressure propagation radius and gas desorption radius to the well-controlled boundary, in the single-phase water flow stage and the gas-water flow stage, respectively, with inter-well pressure interference accomplished in the single-phase gas flow stage. A mathematic model was developed to quantitatively optimize drainage strategies for each stage, with the maximum bottom hole flow pressure (BHFP) drop rate and the maximum daily gas production calculated to guide the optimization of CBM production. Finally, six wells from the Shizhuangnan Block in the southern Qinshui Basin of China were used as a case study to verify the practical applicability of the model. Calculation results clearly indicate the differences in production characteristics as a result of different drainage strategies. Overall, if the applied drainage strategies do not achieve optimal drainage results, the coal reservoir could be irreversibly damaged, which is not conducive to expansion of the pressure drop funnel. Therefore, this optimization model provides valuable guidance for rational CBM drainage strategy development and efficient CBM production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA